Чему равна первая космическая скорость марса?

Первая космическая скорость

Первая космическая скорость или Круговая скорость V1 — скорость, которую необходимо придать объекту без двигателя, пренебрегая сопротивлением атмосферы и вращением планеты, чтобы вывести его на круговую орбиту с радиусом, равным радиусу планеты.

Иными словами, первая космическая скорость — это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите.

Формула

где   G — гравитационная постоянная (6,67259·10−11 м³·кг−1·с−2), — первая космическая скорость. Подставляя численные значения (для Земли M = 5,97·1024 кг, R = 6 378 км), найдем

7,9 км/с

Первую космическую скорость можно определить через ускорение свободного падения —

Вычисление

Для того, чтобы покинуть пределы Солнечной системы с орбиты Земли, ракета массой m{\displaystyle m} должна обладать скоростью относительно Солнца vC{\displaystyle v_{C}}, определяемой законом сохранения энергии

mvC22=GmMCRZC,{\displaystyle {\frac {mv_{C}^{2}}{2}}=G{\frac {mM_{C}}{R_{ZC}}},}

где MC{\displaystyle M_{C}} — масса Солнца, RZC{\displaystyle R_{ZC}} — радиус земной орбиты. Отсюда требуемая скорость ракеты относительно Солнца

vC=2GMCRZC.{\displaystyle v_{C}={\sqrt {\frac {2GM_{C}}{R_{ZC}}}}.}

Ракета вследствие движения вместе с Землей по орбите вокруг Солнца уже обладает скоростью вращения Земли вокруг Солнца, которую можно найти, применив второй закон Ньютона:

GMCmRZC2=mvZ2RZC,{\displaystyle G{\frac {M_{C}m}{R_{ZC}^{2}}}={\frac {mv_{Z}^{2}}{R_{ZC}}},}

откуда

vZ=GMCRZC.{\displaystyle v_{Z}={\sqrt {\frac {GM_{C}}{R_{ZC}}}}.}

Следовательно, при разгоне ракеты в направлении вектора скорости движения Земли по её орбите вокруг Солнца скорость космической ракеты vRZ{\displaystyle v_{RZ}} относительно Земли для выхода за пределы Солнечной системы должна быть равна

vRZ=vC−vZ=vZ(2−1).{\displaystyle v_{RZ}=v_{C}-v_{Z}=v_{Z}({\sqrt {2}}-1).}

Для того, чтобы удалить корабль из поля тяготения Земли, ему надо сообщить вторую космическую скорость

v2=2GMZRZ.{\displaystyle v_{2}={\sqrt {\frac {2GM_{Z}}{R_{Z}}}}.}

Следовательно, кинетическая энергия Ek{\displaystyle E_{k}}, которую надо сообщить космическому кораблю для того, чтобы он покинул Солнечную систему, складывается из кинетической энергии E2{\displaystyle E_{2}}, необходимой для того, чтобы покинуть поле тяготения Земли и кинетической энергии ERZ{\displaystyle E_{RZ}}, необходимой для того, чтобы он с орбиты Земли покинул поле тяготения Солнца

mv322=mv222+mvRZ22,{\displaystyle {\frac {mv_{3}^{2}}{2}}={\frac {mv_{2}^{2}}{2}}+{\frac {mv_{RZ}^{2}}{2}},}

откуда v3=v22+vRZ2{\displaystyle v_{3}={\sqrt {v_{2}^{2}+v_{RZ}^{2}}}}.

Отсюда приходим к формуле:

v3=(2−1)2vZ2+v22,{\displaystyle v_{3}={\sqrt {({\sqrt {2}}-1)^{2}v_{Z}^{2}+v_{2}^{2}}},}

где vZ{\displaystyle v_{Z}} — орбитальная скорость планеты, v2{\displaystyle v_{2}} — вторая космическая скорость для планеты.

Подставляя численные значения (для Земли vZ{\displaystyle v_{Z}} = 29,783 км/с, v2{\displaystyle v_{2}} = 11,182 км/с), найдём

v3≈{\displaystyle v_{3}\approx } 16,650 км/с.

Четвёртая и пятая космическая скорости

Четвёртая космическая скорость — минимально необходимая скорость тела без двигателя, позволяющая преодолеть притяжение галактики Млечный Путь. Она используется довольно редко.

Четвёртая космическая скорость не постоянна для всех точек Галактики, а зависит от расстояния до центральной массы.

По грубым предварительным расчётам в районе нашего Солнца четвёртая космическая скорость составляет около 550 км/с. Значение сильно зависит не только (и не столько) от расстояния до центра галактики, а от распределения масс вещества по Галактике, о которых пока нет точных данных, ввиду того что видимая материя составляет лишь малую часть общей гравитирующей массы, а все остальное — скрытая масса.

Ещё реже в некоторых источниках встречается понятие «пятая космическая скорость». Это скорость, позволяющая добраться до иной планеты звездной системы вне зависимости от разности плоскостей эклиптики планет. Например, для Солнечной системы и, конкретно, для Земли, чтобы орбита межпланетного перелета была перпендикулярной к земной орбите, нужна скорость запуска 43,6 километра в секунду.

Видео

Вторая космическая скорость

Основная статья: Вторая космическая скорость

Между первой и второй космическими скоростями в нерелятивистском случае существует простое соотношение:

v2=2⋅v1.{\displaystyle v_{2}={\sqrt {2}}\cdot v_{1}.}

Квадрат скорости убегания (второй космической скорости) равен удвоенному ньютоновскому потенциалу на поверхности тела, взятому с обратным знаком:

v22=−2Φ=2GMR.{\displaystyle v_{2}^{2}=-2\Phi =2{\frac {GM}{R}}.}

Вторая космическая скорость (параболическая скорость, скорость убегания) обычно определяется в предположении отсутствия каких-либо других небесных тел. Например, для Луны скорость убегания равна 2,4 км/с, несмотря на то, что в действительности для удаления тела на бесконечность с поверхности Луны необходимо преодолеть притяжение Земли, Солнца и Галактики.

Первая и вторая космические скорости для различных небесных тел

Небесное тело Масса (по отношению к массе Земли) v1, км/с v2, км/с
Энцелад 1,8×10−5 0,169 0,239
Церера 1,57×10−4 1,678 2,4
Луна 0,0123 1,678 2,4
Меркурий 0,0553 3,005 4,3
Венера 0,815 7,325 10,4
Земля 1 7,91 11,2
Марс 0,107 3,546 5,0
Юпитер 317,8 42,58 59,5
Сатурн 95,2 25,535 35,5
Уран 14,54 15,121 21,3
Нептун 17,1 16,666 23,5
Солнце 332 940 437,047 618,1
Ближайший белый карлик Сириус B 338 933 4 800 6 800
Нейтронная звезда ок. 670 000 143 000 ± 10 000 ~ 200 000

Источники

  • https://ru.wikipedia.org/wiki/Космическая_скорость
  • https://mirznanii.com/a/9233/kosmicheskie-skorosti
  • http://www.astronet.ru/db/msg/1162252
  • https://fb.ru/article/54389/kosmicheskaya-skorost
Ссылка на основную публикацию