Можно ли Марс заполнить водой, морями и океанами?

Атмосфера и температура планеты Марс

Красная планета располагает тонким атмосферным слоем, который представлен углекислым газом (96%), аргоном (1.93%), азотом (1.89%) и примесями кислорода с водой. В ней много пыли, размер которой достигает 1.5 микрометра. Давление – 0.4-0.87 кПа.

Большое расстояние от Солнца к планете и тонкая атмосфера привели к тому, что температура Марса низкая. Она скачет между -46°C до -143°C зимой и может прогреваться до 35°C летом на полюсах и в полдень на экваториальной линии.

Тонкая марсианская атмосфера и пыльная красная поверхность, отображенные аппаратом Викинг-1 в 1976 году

Марс отличается активностью пылевых бурь, которые способны имитировать мини-торнадо. Они образуются благодаря солнечному нагреву, где более теплые воздушные потоки поднимаются и формируют бури, простирающиеся на тысячи километров.

При анализе в атмосфере также нашли следы метана с концентрацией 30 частичек на миллион. Значит, он освобождался из конкретных территорий.

Исследования показывают, что планета способна создавать в год до 270 тонн метана. Он достигает атмосферного слоя и сохраняется 0.6-4 лет до полного разрушения. Даже небольшое наличие говорит о том, что на планете скрывается газовый источник. Нижний рисунок указывает концентрацию метана на Марсе.

Распределение метана в атмосфере Марса

Среди предположений намекали на вулканическую активность, падение комет или наличие микроорганизмов под поверхностью. Метан может создаваться и в небиологическом процессе – серпентинизация. В нем присутствует вода, углекислый газ и минеральный оливин.

В 2012 году провели несколько вычислений по метану при помощи ровера Curiosity. Если первый анализ показал определенное количество метана в атмосфере, то второй показал 0. А вот в 2014 году ровер натолкнулся на 10-кратный всплеск, что говорит о локализированном выбросе.

Также спутники зафиксировали наличие аммиака, но его срок разложения намного короче. Возможный источник – вулканическая активность.

Следуй за Водами

На минутку вернемся обратно на Землю. На сегодняшний день Земля — единственная планета во Вселенной, о существовании жизни на которой нам точно известно. Она находится в привилегированном положении относительно Солнца. Эту область называют «Зоной Обитаемости». Характеризуется она тем, что расстояние до ближайшей звезды позволяет воде находиться в жидком состоянии. И это является ключом к «Земной Версии» () жизни. Все формы этой жизни, насколько нам известно, тем или иным образом используют в метаболизме жидкую воду. Где есть вода, там есть жизнь.

Но действует ли эта логика в других мирах Вселенной? Действует ли она на других планетах или лунах нашей Солнечной системы? Действует ли она на Марсе?

До последнего времени единственными наблюдавшимися формами существования воды на Марсе были ее газообразное или твердое состояние. Атмосфера планеты слишком холодна и слишком разрежена, чтобы поддерживать существование воды в жидком состоянии (по крайней мере, на поверхности). Так было не всегда. На ранних этапах эволюции Солнечной системы Марс был голубой планетой. Еще до того, как такой стала Земля. Когда-то он имел плотную атмосферу. Но в древности с Марсом что-то произошло, и это что-то «выключило» внутреннюю динамо-машину, которая генерировала глобальное магнитное поле. Лишившись магнитосферы, Марс подставил атмосферу своей планеты под разрушительное воздействие солнечного ветра. И планета подверглась глубокой иссушающей заморозке.

Вода на поверхности Марса замерзла или сублимировалась (превратилась из пара в лед, минуя жидкую фазу). Часть водяного пара рассеялась в космос. Огромные запасы воды, скорее всего, оказались заключены под поверхностью в виде льда, в областях вечной мерзлоты или задержались в ледяных шапках гор. Они стали замерзшими артефактами когда-то полного влаги мира. Но в 2011 году специалисты, анализируя данные Марсианского Орбитального Зонда, доложили об обнаружении странных сезонных темных полос, которые появляются на прогретых Солнцем марсианских склонах в южном полушарии. И тогда, пользуясь косвенными данными, ученые впервые связали «повторяющиеся линии на склонах» (ПЛС, или RSL) с потоками жидкой воды на поверхности Марса.

Совсем недавно (в одну неделю с презентацией фильма «Марсианин» с Меттом Деймоном) это предположение подтвердилось. Используя спектрометр, установленный на Орбитальном Зонде, в темных линиях RSL были обнаружены спектральные линии гидратированной соли. Это находка стала подтверждением того, что темные линии действительно являются потоками воды, находящейся в жидком состоянии, но только пересыщена солями. То есть перед нами рассол перхлоратов.

Это восхитительная новость. Она подтверждает, что сегодня на поверхности Марса существует жидкая вода. Но вполне возможно, что это не должно радовать будущих исследователей. Фактически, это может таить смертельную опасность для них.

Нащупали на Марсе жизнь

В последние годы геологи, астробиологи и другие специалисты активно спорят о том, существуют ли запасы органики или микробы в приповерхностных слоях почвы Марса, где есть жидкая вода, куда почти не проникают космические лучи и где относительно тепло.

Однако инструменты радара MARSIS не могут определить, есть ли в обнаруженной жидкой воде условия для существования жизни.

В начале июня ученые объявили, что марсоход Curiosity сделал два важных открытия на поверхности Красной планеты — нашел следы древней органики и доказал, что уровни метана в его атмосфере сильно меняются при наступлении зимы и лета.

«С этими новыми открытиями Марс говорит нам продолжать искать признаки жизни. Я уверен, что наши продолжающиеся и будущие миссии готовят еще более захватывающие открытия на Красной планете», — говорит глава отдела научных программ NASA Томас Зурбучен.

Высокие концентрации метана показаны желтым и красным / NASA

Химический анализ озерных отложений, найденных марсоходом в кратере Гейла, подтвердил наличие в горных породах планеты большого количества различных органических соединений: тиофенов, ароматических и алифатических углеводородов. Возраст веществ составляет около 3,5 миллиарда лет.

Все обнаруженные органические группы могут быть частями каких-то более сложных молекул. Однако нельзя исключать ни биологические, ни геологические источники, ни возможное попадание органических соединений на Марс с метеоритом.

Метан входит в число биомаркеров, указывающих на возможное присутствие жизни на планете. Исследования Curiosity показали, что концентрация метана в атмосфере Марса растет во время лета и падает во время зимы, достигая концентраций в 2,5 и 6,5 части на десять миллиардов.

Атмосферные процессы не могут объяснить такие изменения. Это говорит в пользу теории, что метан образуется в нижних слоях почвы Марса или в результате деятельности микробов, или в результате разложения клатратов, соединений метана и воды, или же благодаря каким-то геотермальным процессам.

Когда мы будем жить на Марсе?

Для начала космической колонизации ученым и инженерам предстоит решить множество технических задач. Например, очень важно определить, подходит ли каждая разрабатываемая подсистема установки по добыче природных марсианских ресурсов для масштабирования. Сможет ли она удовлетворять все потребности и выйти на тот уровень пропускной способности, который будет необходим в рамках пилотируемых миссий на Красную планету

Согласно недавним подсчетам специалистов NASA, подобная система примерно за 16 месяцев должна будет производить около 7 тонн жидкого метана и около 22 тонн жидкого водорода. Исходя из этого, для максимальной отдачи необходимо очень точно определить наиболее подходящие места для развертывания фабрики по сбору и переработке ресурсов. Кроме того, необходимо рассчитать сколько экскаваторов RASSOR потребуется доставить на Марс, а также сколько часов в сутки им необходимо будет работать, чтобы выйти на заданный план добычи. В конце концов нужно понять насколько большой должна быть морозильная установка для углерода, реактор Сабатье, а также сколько все это добро будет потреблять энергии.

Также ученым необходимо предусмотреть возможные форс-мажорные проблемы, которые могут помешать добыче и переработке ресурсов, потенциально задержав отправку следующей экспедиции на Красную планету. Необходимо оценить все возможные риски, связанные с этими проблемами и заранее разработать правильные и быстрые пути их решения, возможно оснастив систему дублирующими элементами для временной замены вышедшего из строя оборудования.

Необходимо убедиться, что роботизированные технологии смогут поддерживать операционную деятельность без остановки и необходимости в обслуживании в течении нескольких лет, поэтому их разработка будет проходить в строгом соответствии с установленными стандартами. Например, потребуется максимально снизить объем использующихся двигающихся частей. Таким образом можно будет минимизировать воздействие реголитной пыли на эффективность всей системы. Если же подойти к вопросу с другой стороны и начать разрабатывать двигающиеся части с более высокой устойчивостью к пыли, то это не только усложнит всю систему в целом, но еще и добавит к ней лишнего веса, который, как уже говорилось, равноценен золоту.

Ученым также предстоит выяснить, каким образом и в каких пропорциях мелкий и твердый реголит смешан со льдом под поверхностью Марса. Эти данные помогут более эффективно подготовить экскаваторы для добычи ресурсов. Например, текущая версия ковша RASSOR наиболее приспособлена для сбора реголита, смешанного с кусковым льдом. Однако данный дизайн будет менее эффективен при необходимости «вгрызаться» в более крупные пласты твердого льда. Для разработки более подходящего оборудования необходимо получить точное представление о распределении льда на Маре. Другой вариант – разработать более прочное, более сложное, более тяжелое и универсальное оборудование, которое сможет работать с любым видом почвы и плотностью ледяных пластов. Но, опять же, это лишние траты.

Еще нужно решить вопросы, связанные с долгим хранением сверхохлажденных жидкостей. Технологии хранения веществ и материалов под высоким давлением постоянно совершенствуются, но смогут ли современные технологии работать на поверхности Марса продолжительное количество времени?

Процесс сборки этого монстра.

В общем, в ближайшие годы ученые NASA будут заниматься решением всех этих проблемных вопросов. Инженеры Swamp Works в свою очередь продолжат повышать эффективность и готовность всех разрабатываемых компонентов их системы. Экскаваторы планируют сделать еще более крепкими и легкими. После этого планируется приступить к их испытаниям в искусственно созданных и максимально приближенных к марсианским условиях. Ученые также хотят повысить качество и эффективность печи, системы электролиза, а также разработать масштабируемую модель реактора Сабатье и холодильной установки для производства углерода. Разработчики уверены, что решение этих и многих других задач, приведет к тому, что пылесборочный прототип перестанет быть прототипом и в конце концов займется настоящей работой на поверхности Марса, обеспечивая будущих колонистов всеми необходимыми для жизни ресурсами.

Так есть ли вода на планетах Солнечной системы?

Долгое время ученые предполагали, что вода имеется на Луне. Однако изображение, полученное при помощи телескопов с большим разрешением, помогло установить, что лунные «моря» и «океаны» не что иное, как кратеры и базальтовые равнины. Проведенные исследования подтвердили наличие следов воды в пробах лунного грунта, а позднее, в 2009 году вода была обнаружена на Луне в твердом состоянии – большие скопления льда на дне лунных кратеров. На сегодняшний день у астрофизиков нет сомнений в том, что найденный лед действительно водный.

Сходные предположения выдвигались и относительно Венеры. Длительное время существовала теория существования океанов на этой планете, но она была развенчана вместе с отправкой на поверхность Венеры первых космических аппаратов. Немного водяного пара обнаружено в атмосфере планеты, однако, на поверхности наблюдается слишком высокая температура. Возможно, вода на планете существовала в далеком прошлом, но в каком виде, непосредственно в жидком или в виде пара, неизвестно. Так или иначе, на сегодняшний день жизнь на Венере невозможна.

Особые надежды возлагались на Марс: изучая красную планету в телескоп, многие ученые наблюдали на ее поверхности сеть каналов, происхождение которых объяснялось несколькими теориями. Одной из них было наличие водных течений, рек и морей, другая предполагала существование жизни и утверждала, что каналы имеют искусственное происхождение. Недаром именно Марс был так любим писателями-фантастами, и кажется, что именно ждут встречи и контакта с землянами инопланетные зеленые человечки.

Позднее были предприняты попытки изучения каналов, но составляемые карты никак не совпадали друг с другом, вызывая недоумение. Фотографии, сделанные в двадцатом веке, позволили утверждать, что вода в жидком состоянии на поверхности Марса отсутствует. А искусственный спутник Марса «Маринер 9» поставил все точки над «I»: большинство известных каналов оказались оптической иллюзией. Небольшое количество воды обнаружено в пробах грунта, какое-то количество водяного льда на планете также существует, а еще вода имеется в слое вечной мерзлоты, но всего этого явно недостаточно для существования жизни. Возможно, что Уран и Нептун имеют моря из горячей воды, но структура этих планет мало изучена.

Цианобактерии в каждой луже. Насыщение атмосферы кислородом

Допустим, воспользовавшись одной из перечисленных идей, плотную атмосферу на Марсе мы всё-таки создадим. Следом за этим нужно будет срочно насытить её кислородом, необходимым людям и остальным земным формам жизни.

Кто такой арборист и как он делает нашу жизнь безопаснее

Профессор Эдинбургского университета, директор Центра астробиологии Великобритании Чарльз Кокелл полагает, что при наличии на Красной планете воды, подходящей температуры и надёжного атмосферного купола нужно задействовать цианобактерии. Это превосходные одноклеточные фотосинтетики, ответственные за «кислородную катастрофу», изменившую состав атмосферы нашей планеты. Их главные достоинства — неприхотливость и высокая скорость воспроизводства. Для размножения им нужна вода, поэтому оптимальный вариант — заселить ими все водоёмы на планете вплоть до луж. Но будьте осторожны: некоторые виды этих бактерий вместо кислорода выделяют токсичные вещества.

Рассматриваемые методы колонизации Марса

За последние десятилетия возникало множество предложений о способах создания колоний на Марсе. В 1964 году Дандридж Коул выступал за активацию парникового эффекта – доставка аммиачных льдов на поверхность планеты. Это мощный парниковый газ, поэтому должен загустить атмосферу и повысить температуру Красной планеты.

Ученым удалось вывести скорость потери воды через измерение соотношения воды в сегодняшнем состоянии и моделями 4.3 млрд. лет назад

Еще один вариант – уменьшение альбедо, где марсианскую поверхность покроют темным материалом, чтобы сократить поглощение звездных лучей. Эту идею поддерживал Карл Саган. В 1973 году он даже предложил два сценария для этого: доставка низколегированного материала и посадку темных растений на полярных территориях, чтобы расплавить ледяные шапки.

В 1982 году Кристофер Маккей написал статью о концепции саморегулируемой марсианской биосферы. В 1984 году Д. Лавлок и М. Албаби предложили импортировать хлорфторуглероды, чтобы создать глобальное потепление.

Художественная интерпретация возможных растений, согревающих Красную планету

В 1993 году Роберт Зубрин и Кристофер Маккей предложили разместить орбитальные зеркала, которые бы увеличили нагрев. Если расположить их возле полюсов, то можно было бы расплавить ледяные запасы. Также они голосовали за использование астероидов, которые при ударах накаляют атмосферу.

В 2001 году поступила рекомендация о применении фтора, который в качестве парникового газа в 1000 раз эффективнее СО2. Причем эти материалы можно добывать на Красной планете, а значит можно обойтись без земных поставок. Нижний рисунок демонстрирует концентрацию метана на Марсе.

Исследователи НАСА отметили колебания метановой концентрации в атмосфере. Это говорит о том, что он все время пребывает и убывает

Также предлагали доставлять метан и прочие углеводороды из внешней системы. Их много на Титане. Есть идеи по созданию закрытых биодомов, где будут использовать кислородосодержащие цианобактерии и водоросли, посаженные в марсианскую почву. В 2014 году проводили первые испытания и ученые продолжают развивать концепцию. Такие конструкции способны создать определенные кислородные запасы.

Процесс «марсианского озеленения» включает импорт газов и земных организмов для планетарных трансформаций

Гигантские солнечные зайчики. Марс в орбитальных зеркалах

Чтобы запустить процесс глобального потепления с последующим образованием атмосферы, можно использовать орбитальные зеркала. Их нужно расположить вблизи Красной планеты и направить отражённые ими солнечные лучи прямо на вековые льды.

Опыт создания космических зеркал у землян уже есть, правда, не очень успешный: в 1990-е годы Роскосмос запускал на околоземную орбиту аппараты «Знамя-2» и «Знамя-2,5». На первом аппарате складной 20-метровый парус из светоотражающей металлизированной плёнки толщиной в несколько десятков микрон удалось развернуть — и даже запустить с его помощью на Землю солнечного зайчика шириной примерно 8 км. Второй парус диаметром 25 метров раскрыть не удалось. Изначально был запланирован ещё один запуск — «Знамя-3», но после неудач с предыдущими экспериментами его отменили.

Фото: NASA/JPL-Caltech/MSSS

Подобные проекты предлагали и другие страны, однако успешными результатами пока никто не похвастался. Вероятно, эта задача не входит в приоритеты ни одной космической программы, что, впрочем, неудивительно — есть в космосе дела и поважнее.

Чтобы растопить ледники Марса, понадобится система зеркал — каждое по несколько километров в диаметре. Допустим, через сотню лет мы научимся создавать такие, ещё через какое-то время сможем доставлять их к Марсу, успешно разворачивать и настраивать. Что ж, пока время терпит.

Как добываются ресурсы на Марсе

Знакомьтесь, RASSOR (Regolith Advanced Surface Systems Operations Robot) – автономный добытчик, разработанный с единственной целью – копать реголит в условиях низкой гравитации

При разработке RASSOR (читается как «рейзор» — от английского «лезвие») инженеры NASA уделили особое внимание его системе силовых приводов. Последние состоят из моторов, редукторов и других механизмов, составляющих основную массу всей установки

Здесь используются бескаркасные двигатели, электромагнитные тормоза, а также, среди прочих вещей, 3D-напечатанные титановые корпуса – все для того, чтобы минимизировать общий вес и объем конструкции. Как итог, система обладает примерно в половину меньшей массой, по сравнению другими приводами, имеющими аналогичные технические характеристики.

Для рытья RASSOR использует два оппозиционных барабанных ковша, каждый из которых оснащен несколькими зубьями для захвата материала. При движении аппарата барабанные ковши вращаются. Приводы, которые их удерживают, опускаются и барабаны, полые внутри, в буквальном смысле срезают верхний слой поверхностного реголита. Другими словами, комбайн производит забор лишь верхнего слоя материала, а не роет вглубь. Еще одной ключевой особенностью RASSOR является оппозитная конструкция – барабаны вращаются в разных направлениях. Это позволяет не применять большие усилия для забора грунта в условиях низкой гравитации.

Как только барабаны RASSOR заполняются, робот прекращает сбор и движется в сторону перерабатывающей фабрики. Для разгрузки реголита машина просто вращает барабаны в противоположном направлении – материал падает через те же отверстия в барабанах, через которые производился его сбор. Имеющая у фабрики своя роботизированная рука-подъемник собирает доставленный реголит и отправляет его на загрузочную ленту фабрики, которая в свою очередь доставляет материал в вакуумную печь. Там реголит будет разогреваться до высоких температур. Содержащиеся в материале молекулы воды будут выдуваться сухой газодувкой, а затем собираться с помощью охлаждающего термостата.

Вы возможно задаетесь вопросом: «а разве марсианский реголит изначально не сухой?». Сухой, но не везде. Все зависит от того, где и как глубоко вы будете копать. В некоторых областях планеты всего в нескольких сантиметрах под поверхностью имеются целые пласты водного льда. Еще ниже могут находиться сернокислая известь и песчаники, в которых может содержаться примерно до 8 процентов воды от общей массы массива.

После конденсации отработанный реголит выбрасывается обратно на поверхность, где RASSOR может его подобрать и отвезти в более удаленное от фабрики место. Эти «отходы» на самом деле представляют собой очень ценный материал, поскольку из него при помощи технологий 3D-печати, которые в настоящий момент также разрабатываются в NASA, можно будет создавать защитные сооружения для поселения, а также дороги и посадочные площадки.

Схема добычи полезных ископаемых на Марсе в картинках:

Разработка: Колесный робот производит забор реголита вращающимися ковшами с забороными отверстиями

Транспортировка: Вращающиеся в обратном направлении ковши-барабаны разгружают реголит в роботизированную руку фабрики

Переработка: Для извлечения воды из реголита его разогревают в печи, где происходит электролиз водорода и кислорода

Передача: После получения определенного объема вещества, другая роботизированная рука, оборудованная специальной защитной закрытой системой, загружает его на мобильный роботизированный танкер

Использование и хранение: Астронавты будут использовать воду и кислород для дыхания, а также выращивания растений; топливо будет храниться в виде криогенных жидкостей для будущего использования

Вся вода, которая будет добываться из реголита, будет проходить тщательную очистку. Модуль очистки будет состоять из многофазной системы фильтрации, а также нескольких деионизирующих подложек.

Темная (и светлая) стороны перхлоратов

Так как перхлораты — мощные окислители, при нагревании они способны разрушить любые органические соединения. Теперь знаем, что Красная Планета покрыта как перхлоратами, так и органическими соединениями (что также подтвердил Curiosity). Может, стоит пересмотреть результаты старого эксперимента Викинга? Главной причиной того, что Викинг не смог подтвердить наличие жизни на Марсе, стало отсутствие в образцах органических соединений. Но в 1970 мы ничего не знали о перхлоратах. И вполне возможно, в ходе эксперимента они просто стерилизовали образец. Это интересное предположение.

Перхлораты крайне токсичны для человека. Даже в малых дозах они могу причинить очень большие неприятности (вызвать заболевание щитовидной железы). Также они считаются сильным канцерогеном. Но ведь Марс богат перхлоратами. Возможно, что именно они станут главной опасностью для будущего освоения Марса, превышающей даже радиационную. Их дезактивация станет главной задачей. Марс по большей части является очень сухим миром и очень пыльным. Известно, что пыль эта в большей части состоит из опасных для жизни веществ. Вряд ли будущие астронавты захотят дышать таким воздухом, если до ближайшего госпиталя придется добираться много миллионов миль.

Разумеется, это не перечеркивает перспективу дальнейшего освоения Марса, а немного усложняет задачу. Фактически нам повезло, что исследовательские роботы обнаружили токсичный компонент заранее. Теперь мы можем лучше подготовиться к защите. Даже на Земле существуют микроорганизмы, которые используют перхлораты для получения энергии. И этот факт может стать достаточным условием для того, чтобы отправить на Марс экспедицию, невзирая на опасности.

Как подчеркнули ученые на прошедшей пресс-конференции, вряд ли мы сможем отправить для подтверждения этого открытия роботов. Склоны, на которых обнаружено данной явление, очень круты, и посадка любого автоматического аппарата в данной местности практически невозможна (по крайней мере, при современном уровне развития техники). Астробиологи в настоящее время рассматривают данные области как приоритетные для нахождения жизни на Марсе. Поэтому еще одной проблемой может стать загрязнение, земные микроорганизмы могут пробраться в эту местность на автоматических аппаратах, и результаты исследований будут ложными. Земные микроорганизмы могут даже развиваться и засорять весь регион. Конечно, сложно оценить вероятность того, что какие-то земные бактерии будут чувствовать себя как дома в ядовитых рассолах марсианской воды, но будет не правильно, если первая, найденная на Марсе, органическая жизнь окажется завезенной с Земли.

Исследование этих склонов, скорее всего, будет одной из приоритетных задач пилотируемой марсианской экспедиции, которую НАСА планирует запустить в конце 2020-х или начала 2030-х годов.

И хотя источник «Повторяющихся Склоновых Линий» пока неизвестен, их потенциал, как место зарождения жизни, просматривается очень ясно. Так давайте попробуем определить раз и навсегда, есть ли жизнь на Марсе. И разработаем технологии, позволяющие нам жить на этой планете. Возможно, эти воды отравлены. Но все же, нужно проследовать за водами на марсианских склонах.

Размер, масса и орбита планеты Марс

Экваториальный радиус планеты Марс составляет 3396 км, а полярный – 3376 км (0.53 земного). Перед нами буквально половина земного размера, но масса – 6.4185 х 1023 кг (0.151 от земной). Планета напоминает нашу по осевому наклону – 25.19°, а значит на ней также можно отметить сезонность.

Экваториальный

радиус

3396,2 км
Полярный радиус 3376,2 км
Средний радиус 3389,5 км
Площадь поверхности 1,4437⋅108 км²
0,283 земной
Объём 1,6318⋅1011  км³
0,151 земного
Масса 6,4171⋅1023 кг
0,107 земной
Средняя плотность 3,933 г/см³
0,714 земной
Ускорение свободного

падения на экваторе

3,711 м/с²
0,378 g
Первая космическая скорость 3,55 км/с
Вторая космическая скорость 5,03 км/с
Экваториальная скорость

вращения

868,22 км/ч
Период вращения 24 часа 37 минут 22,663 секунды
Наклон оси 25,1919°
Прямое восхождение

северного полюса

317,681°
Склонение северного полюса 52,887°
Альбедо 0,250 (Бонд)
0,150 (геом.)
Видимая звёздная величина −2,91m

Максимальное расстояние от Марса до Солнца (афелий) – 249.2 млн. км, а приближенность (перигелий) – 206.7 млн. км. Это приводит к тому, что на орбитальный проход планета тратит 1.88 лет.

Перигелий 2,06655⋅108 км
1,381 а.е.
Афелий 2,49232⋅108 км
1,666 а. е.
Большая полуось 2,2794382⋅108 км
1,523662 а. е.
Эксцентриситет

орбиты

0,0933941
Сидерический период обращения 686,98 дней
Синодический период обращения 779,94 дней
Орбитальная скорость 24,13 км/с (средняя)
Наклонение 1,85061° относительно плоскости эклиптики
5,65° относительно солнечного экватора
Долгота восходящего узла 49,57854°
Аргумент перицентра 286,46230°
Спутники 2

Немного о Венере

Венера – соседка Земли и по совместительству одна из самых горячих планет в нашей системе. Всему виной плотнейшие облака, которые удерживают полученное тепло в атмосфере. Из-за этого средняя температура на планете составляет 477 °C. Тем не менее, если решить проблему с облаками, то вполне реально получить в итоге условия, подобные земным. К тому же добираться до Венеры гораздо проще, чем к любой другой планете.

Венеру заслуженно называют близнецом Земли, т.к. их диаметр и масса очень схожи.

Кроме решения проблемы чрезвычайной жары человеку придется решать проблему с водой, которой на Венере не обнаружено, но всё же есть надежда, что где-то в недрах планеты она есть. Неприятен и тот факт, что без облаков Венера может оказаться подвержена радиации из-за слабого магнитного поля.

Учёные уже имеют представление о том, как подготовить Венеру к активному терраформированию. Можно установить специальные экраны между планетой и Солнцем, которые снизят поток солнечной энергии, что позволит значительно снизить температуру. Менее изящным способом является бомбардировка Венеры кометами и астероидами, которые несут лёд. К тому же согласно расчётам так можно раскрутить планету и сократить венерианские сутки, которые сейчас составляют 58,5 земных. В процессе формирования гидросферы уже можно будет начать закидывать туда водоросли и земные микроорганизмы.


Размер астероида, необходимого для создания гидросферы на Венере

Таким образом, колонизация Венеры вполне возможна, пусть и не в ближайшем будущем, ведь сейчас для этих целей человечеством выбрана иная планета…

Ссылка на основную публикацию