Тиристорный электропривод

Область применения тиристорных контакторов

По своим техническим характеристикам тиристорные контакторы оказались наиболее подходящими для использования в следующих операциях:

  • Тяжелый и продолжительный пуск с высокими нагрузками, характерный, например, для центробежных и осевых вентиляторов.
  • При создании значительной нагрузки на сеть во время пуска, что приводит к просадкам напряжения и ложным срабатываниям. Установка тиристорного контактора позволяет снизить пусковой ток примерно в 3 раза.
  • Большое количество включений и выключений за короткий промежуток времени.
  • Запуск двигателей большой мощности, особенно с высокими оборотами. Происходит снижение электродинамического воздействия на агрегат.
  • В системах плавного пуска, предусмотренных технологическими процессами.

Контакторы переменного тока

Модульный контактор (КМ)

Тиристорный регулятор мощности

Реверсивный контактор

Контакторы и магнитные пускатели: сходства и различия

Контакторы электромагнитные

Принцип действия тиристорного контактора

Действие тиристорного контактора основано на бесконтактной коммутации. Данное физическое явление заключается в изменяющейся проводимости полупроводников, подключаемых в цепь вместе с нагрузкой. Во время работы не наблюдается видимых разрывов цепи, а сам процесс выглядит следующим образом: когда цепь выключена – проводимость полупроводника резко снижается, а сопротивление может достигать нескольких десятков МОм. После включения проводимость элемента восстанавливается, а сопротивление стремится к нулю и измеряется уже в миллиОмах (мОм).

Полупроводниковыми приборами служат различные виды симисторов, тиристоров и транзисторов, включаемых последовательно с нагрузкой в электрическую цепь. Их действие основано на явлении электронно-дырочного перехода (р-п), обеспечивающего одностороннюю проводимость от анода (р) к катоду (п).

Величина тока, при котором происходит выключение, называется током удержания. Поочередное поступление импульсов из блока управления вызывает такое же периодическое закрытие и открытие тиристоров.

На практике работа представленной схемы происходит следующим образом. После нажатия кнопки SB1 через электронное реле времени КТ потечет ток. Это вызовет замыкание контакта КТ в цепи управления и тиристоры VS1 и VS2 становятся проводниками: первый – с положительной полуволной, а второй – с отрицательной полуволной напряжения. Такая проводимость сохраняется на все время, пока замкнуты контакты КТ. По окончании временной выдержки происходит размыкание контактов и напряжение к управляющим электродам уже не поступает. Проводимость теряется и наступает разрыв цепи.

Все эти действия происходят за очень короткое время, как раз достаточное для контактной сварки, используемой в качестве примера. Подобный рабочий режим может быть обеспечен только тиристорным контактором в совокупности с электронным реле времени. Необходимая полярность управляющего тока обеспечивается диодами VD1 и VD2, соединенными с соответствующими тиристорами.

Данный тип контактора предназначен для работы с переменным током. Он считается неуправляемым, поскольку в нем отсутствует регулировка величины токовой нагрузки. Такие контакторы обеспечивают лишь продолжительность этой нагрузки, за счет определенного количества полуволн, устанавливаемых электронным реле времени.

Тиристорные контакторы постоянного тока

Контакторы постоянного тока имеют ряд индивидуальных особенностей и характеристик. Одной из них является возможность работы с гораздо более высокими частотами переключения, во время регулировок и преобразований тока и напряжения. Этим они заметно отличаются от тиристорных регуляторов, осуществляющих стабилизацию в цепях с переменным током. Устройства постоянного тока обеспечивают более высокий уровень быстродействия, и данный фактор в значительной степени определяет сферу их использования.

Однако, к этим приборам иногда предъявляются индивидуальные требования. Например, в случае необходимости, тиристорный контактор должен включаться в работу в течение минимального промежутка времени. Поэтому вместе с тиристорным устройством могут использоваться обычные электромагнитные контакторы, составляющие комбинированную схему. Их основной функцией является своевременное отключение тиристора. При параллельном подключении (рис. 3а) тиристор выключается путем шунтирования его при помощи замыкающего контакта К.

Если используется последовательное подключение (рис. 3б) данная операция осуществляется размыкающим контактом К. Подобная комбинированная схема включается управляющим импульсом, подаваемым к тиристору VS.

Тиристорные контакторы классифицируются по способу коммутации. Основным признаком считается связь между включениями и выключениями тиристора, производимыми за счет общих электромагнитных процессов, захватывающих коммутирующий контур. В разных случаях коммутация может быть одно-, двух- и трехоперационной или же одно-, двух- и трехступенчатой.

При наличии двух ступеней коммутации, основной тиристорный пускатель может быть выключен независимо от того, когда он был включен. В подобных схемах для выключения используется специальная коммутирующая цепь, подключаемая к основному элементу через дополнительный тиристор. Поэтому процесс выключения контактора в данном случае считается второй рабочей операцией, выполняемой независимо от других действий. Для ее осуществления управляющий импульс подается к коммутирующему тиристору.

Трехоперационная схема может включать в себя еще одну дополнительную операцию, если это требуется по техническим условиям эксплуатации. Теоретически количество ступеней можно наращивать без каких-либо ограничений, однако такие многоступенчатые схемы на практике не применяются.

Ссылка на основную публикацию