Тиристоры. виды и устройство. работа и применение. особенности

Тиристорные светодиоды

Обычно тиристор и светодиод в одном светильнике не устанавливаются. Его место заменяет диод, который работает и на включение, и на отключение, как обычный ключ. Это связано с разными причинами, где основная – это конструкция и принцип действия самого прибора, который всегда находится в открытом состоянии. В настоящее время ученые изобрели так называемый тиристорный светодиод.

Тиристорный светодиод

Во-первых, тиристорный светодиод в своем составе кроме кремния имеет: галлий, алюминий, индий, мышьяк и сурьму. Во-вторых, спектр излучения при n-переходах между материалами создает волну длиною 1,95 мкм. А это достаточно большая оптическая мощность, если ее сравнивать с диодным элементом, который производит световые волны в том же диапазоне.

Динисторы (диоды Шокли) и тиристоры SCR (Silicon Controlled Rectifiers, управляемые кремниевые выпрямители)

Динисторы (диоды Шокли) – это довольно любопытные устройства, но довольно ограниченные в применении. Однако их полезность может быть расширена путем оснащения их другим средством отпирания. При этом каждый из них становится настоящим усилительным устройством (только если в режиме отпирания/запирания), и мы называем их кремниевыми управляемыми выпрямителями (silicon-controlled rectifier) или SCR тиристорами.

Тиристор SCR (silicon-controlled rectifier, кремниевый управляемый выпрямитель), или просто тринистор

Развитие от динистора до тринистора достигается с помощью одного небольшого дополнения, фактически не более чем третьего подключения к существующей структуре PNPN (рисунок ниже).

Тиристор SCR (управляемый выпрямитель, тринистор)

Отключение тиристора

Тиристор перейдет в закрытое состояние, если к управляющему электроду открытого тиристора не приложен никакой сигнал, а его рабочий ток спадет до некоторого значения, называемого током удержания (гипостатическим током).

Отключение тиристора произойдет, в частности, если была разомкнута цепь нагрузки (рис. 6а) или напряжение, приложенное к внешней цепи, поменяло полярность (это случается в конце каждого полупериода переменного напряжения питания).

Рис.6. Способы отключения тиристора

Когда тиристор работает при постоянном токе, отключение может быть произведено с помощью механического выключателя.

Включенный последовательно с нагрузкой этот ключ используется для отключения рабочей цепи.

Включенный параллельно основным электродам тиристора (рис. 6б) ключ шунтирует анодный ток, и тиристор при этом переходит в закрытое состояние. Некоторые тиристоры повторно включаются после размыкания ключа. Это объясняется тем, что при размыкании ключа заряжается паразитная емкость р-n перехода тиристора, вызывая помехи.

Поэтому предпочитают размещать ключ между управляющим электродом и катодом тиристора (рис. 1.6в), что гарантирует правильное отключение посредством отсечения удерживающего тока. Одновременно смещается в обратном направлении переход р-n, соответствующий диоду D2 из схемы замещения тиристора тремя диодами (рис. 2).

На рис. 6а-д представлены различные варианты схем отключения тиристора, среди них и ранее упоминавшиеся. Другие, как правило, применяются, когда требуется отключать тиристор с помощью дополнительной цепи. В этих случаях механический выключатель можно заменить вспомогательным тиристором или ключевым транзистором, как показано на рис. 7.

Рис.7. Классические схемы отключения тиристора с помощью дополнительной цепи

Динистор

Это задачи, где применяются двухэлектродные разновидности тиристоров — динисторы. В них присутствуют резисторы, соединенные с эмиттером и базой каждого транзистора. Далее на схеме это R1 и R3. Для каждого электронного прибора есть ограничения по величине приложенного напряжения. Поэтому до некоторой его величины упомянутые резисторы удерживают каждый из транзисторов в запертом состоянии. Но при дальнейшем увеличении напряжения через переходы коллектор–эмиттер появляются токи утечки.

Они подхватываются положительной обратной связью, и оба транзистора, то есть динистор, отпираются. Для желающих поэкспериментировать далее показано изображение со схемой и номиналами компонентов. Можно ее собрать и проверить рабочие свойства

Обратим внимание на резистор R2, отличающийся подбором нужного номинала. Он дополняет эффект утечки и, соответственно, напряжение срабатывания

Следовательно, динистор — это тиристор, принцип работы которого определен величиной питающего напряжения. Если оно относительно велико, он включится. Естественно интересно также узнать, как же его выключить.


Динистор и его эквивалентная схема

Тиристор в цепи переменного тока

При подключении к источнику переменного тока тиристор работает несколько иначе. Это связано с периодическим изменением полярности переменного напряжения.

Поэтому применение в схемах с питанием переменным напряжением автоматически будет приводить к состоянию обратного смещения перехода. То есть в течение половины каждого цикла прибор будет находиться в состоянии «отключено».

Для варианта с переменным напряжением схема тиристорного запуска аналогична схеме с питанием постоянным напряжением. Разница незначительная — отсутствие дополнительного переключателя КН2 и дополнение диода D1.

Благодаря  диоду D1, предотвращается обратное смещение по отношению к управляющему электроду У. Положительным полупериодом синусоидальной формы сигнала устройство смещено прямо вперёд. Однако при выключенном переключателе КН1 к тиристору подводится нулевой ток затвора и прибор остается «выключенным».

В отрицательном полупериоде устройство получает обратное смещение и также останется «выключенным», независимо от состояния переключателя КН1.

Схема 3: КН1 — переключатель с фиксацией; D1 — диод любой под высокое напряжение; R1, R2 -резисторы постоянные 180 Ом и 1 кОм, Л1 — лампа накаливания 100 Вт

Если переключатель КН1 замкнуть, вначале каждого положительного полупериода полупроводник останется полностью «выключенным». Но в результате достижения достаточного положительного триггерного напряжения (возрастания  тока управления) на электроде У, тиристор переключится в состояние «включено».

Фиксация состояния удержания остаётся стабильной при положительном полупериоде и автоматически сбрасывается, когда положительный полупериод заканчивается. Очевидный момент, учитывая падение тока анода ниже текущего значения.

На момент следующего отрицательного полупериода, устройство полностью «отключается» до прихода следующего положительного полупериода. Затем процесс вновь повторяется.

Получается, нагрузка имеет только половину доступной мощности источника питания. Тиристор действует как выпрямляющий диод и проводит переменный ток лишь во время положительных полуциклов, когда переход смещен вперед.

Управление половинной волной

Фазовое управление тиристором является наиболее распространенной формой управления мощностью переменного тока. Пример базовой схемы управления фазой показан ниже. Здесь напряжение затвора тиристора формируется цепочкой R1C1 через триггерный диод D1.

На момент положительного полупериода, когда переход смещен вперед, конденсатор C1 заряжается через резистор R1 от напряжения питания схемы. Управляющий электрод У активируются только тогда, когда уровень напряжения в точке «x» вызывает срабатывание диода D1.

Конденсатор C1 разряжается на управляющий электрод У, устанавливая прибор в состояние «включено». Длительность времени положительной половины цикла, когда открывается проводимость, контролируется постоянной времени цепочки R1C1, заданной переменным резистором R1.

Схема 4: КН1 — переключатель с фиксацией; R1 — переменный резистор 1 кОм; С1 — конденсатор 0,1 мкф; D1 — диод любой на высокое напряжение; Л1 — лампа накаливания 100 Вт; П — синусоида проводимости

Увеличение значения R1 приводит к задержке запускающего напряжения, подаваемого на тиристорный управляющий электрод, что, в свою очередь, вызывает отставание по времени проводимости устройства.

В результате доля полупериода, когда устройство проводит, может регулироваться в диапазоне 0 -180º. Это означает, что половинная мощность, рассеиваемая нагрузкой (лампой), поддаётся регулировке.

Существует масса способов достижения полноволнового управления тиристорами. Например, можно включить один полупроводник в схему диодного мостового выпрямителя. Этим методом легко преобразовать переменную составляющую в однонаправленный ток тиристора.

Однако более распространенным методом считается вариант использования двух тиристоров, соединенных инверсной параллелью. Самым практичным подходом видится применение одного симистора. Этот полупроводник допускает переход в обоих направлениях, что делает симисторы более пригодными для схем переключения переменного тока.

Полный технический расклад тиристора на видео

Видеоматериал, представленный здесь — продолжение знакомства с тиристорами непосредственно глазами. Совмещение текстовой и видео информации открывает способ лучшего понимания темы. Поэтому, рекомендовано смотреть «кино» о тиристорах:

По материалам: Electronics-tutorials

Вступление

Тиристор четыре слоистые, трехтерминальный полупроводниковое устройство, с каждым слоем , состоящим из попеременно N-типа или р-типа материала, например PNPN. Основные терминалы, меченный анод и катод, являются во всех четырех слоев. Терминал управления, называют воротами, прикреплен к р-типа материала вблизи катода. (. Вариант называется SCS-кремниевый управляемый коммутатор-объединяет все четыре слоя к терминалам) Работа тиристора может быть понят в терминах пары тесно связанные биполярных транзисторов , выполненном с возможностью вызывать самоблокировку действия:


Структура на физическом и электронном уровне, а символ тиристор.

Тиристоры имеют три состояния:

  1. Обратный режим блокировки — напряжение прикладывается в направлении, которое будет заблокирован диод
  2. Форвард режим блокировки — напряжение прикладывается в направлении, которое вызвало бы диод проводить, но тиристор не был вызван в проводящий
  3. Форвард режим проведения — Тиристор был запущен в проводящий и останется не проводит до передних капель тока ниже порогового значения, известного как «удерживающего ток»

Функция ворот терминала

Тиристор имеет три р — переходов (последовательно назван J 1 , J 2 , J 3 от анода).

Слой схема тиристора.

Когда анод на положительный потенциал V АК по отношению к катоду, без напряжения , приложенного к воротам, спаи J 1 и J 3 являются смещены в прямом направлении, в то время перехода J 2 смещен в обратном направлении. Как J 2 смещен в обратном направлении, нет проводимости не происходит (выключенное состояние). Теперь , если V АК увеличивается за пределы напряжения пробоя V BO тиристора, лавинный пробой из J 2 имеет место и тиристор начинает проводить (О состоянии).

Если положительный потенциал V G применяется у ворот терминала по отношению к катоду, пробой перехода J 2 происходит при более низком значении V АК . Путем выбора соответствующего значения V G , тиристор может быть переключен в включенном состоянии быстро.

После того, как лавина пробы произошли, тиристор продолжает проводить, независимо от напряжения затвора, пока: (а) потенциал V АК удаляется или (б) ток через устройство (анод-катод) становится меньше , чем ток удержания указанного изготовителем. Следовательно , V G может быть импульс напряжения, такие как выходное напряжение от СЖТ релаксатора .

Импульсы ворота характеризуются с точки зрения запуска затвора напряжения ( V GT ) и пускового тока затвора ( я GT ). Триггер ток затвора изменяется обратно пропорционально шириной импульса затвора таким образом , что, очевидно , что существует минимальный ворот заряд требуется для запуска тиристора.

Переключение характеристик

VI характеристики.

В обычном тиристоре, как только он был включен в контактном выводе затвора, устройство по- прежнему фиксируется в положении на-( т.е. не требуется непрерывная подача тока затвора , чтобы оставаться во включенном состоянии), обеспечивая анодный ток превысило блокировочный ток ( I л ). До тех пор , как анод остается положительно предвзятым, он не может быть отключен до тех пор , пока анодный ток падает ниже удерживающего тока ( I H ). В нормальном рабочем состоянии запирающий ток всегда больше тока удержания. В приведенном выше рисунке I L должен прийти выше I H на оси у , так как I L > I H .

Тиристор может быть выключен, если внешняя цепь вызывает анод, чтобы стать отрицательным смещением (методом, известный как природная, или линия, коммутация). В некоторых приложениях это делается путем переключения второго тиристора, чтобы разрядить конденсатор в катод первого тиристора. Этот метод называется принудительной коммутацией.

После того , как ток в тиристоре уже потушен, конечное время задержка должна пройти , прежде чем анод может снова быть положительно предвзятым и сохраняет тиристор в выключенном состоянии. Эта минимальная задержка называется цепью коммутируется время выключения ( т Q ). Попытка положительно смещает анод в течение этого времени приводит к тому , чтобы быть тиристор себя вызвано остальными носителями заряда ( дырки и электроны ), которые еще не рекомбинирует .

Для приложений с частотами выше , чем внутренние сети переменного тока (например , 50 Гц или 60 Гц), тиристоры с более низкими значениями т Q требуются. Такие быстрые тиристоры могут быть изготовлены путем диффузии тяжелых металлов ионы , такие как золото или платина , которые действуют как центры комбинации заряда в кремнии. Сегодня быстрые тиристоры чаще сделаны электрона или протона облучения кремния, или путем ионной имплантации . Облучение является более универсальным , чем металлическим легирование тяжелого , так как он позволяет дозировку следует отрегулировать достаточно тонко, даже при довольно позднюю стадию обработки кремния.

Проводимость управляемых выпрямителей SCR (тринисторов)

Если управляющий электрод тринистора остается висящим в воздухе (неподключенным), он ведет себя точно так же, как динистор (диод Шокли). Он может быть отперт напряжением переключения или превышением критической скорости нарастания напряжения между анодом и катодом, всё как у динистора. Запирание осуществляется за счет уменьшения тока до тех пор, пока один или оба внутренних транзистора не упадут в режим отсечки, всё как у динистора. Однако, поскольку управляющий вывод подключается непосредственно к базе нижнего транзистора, он может использоваться как альтернативное средство отпирания тиристора SCR. Прикладывая небольшое напряжение между управляющим электродом и катодом, нижний транзистор будет открываться результирующим тока базы, что приведет к тому, что верхний транзистор будет проводить ток, а затем запитывать базу нижнего транзистора, поэтому он больше не будет нуждаться в активации напряжением управляющего электрода. Разумеется, необходимый для отпирания ток управляющего вывода будет намного ниже, чем ток через SCR тиристор от катода до анода, поэтому, используя SCR тиристор, можно добиться усиления.

Переключение/запуск

Данный метод обеспечения проводимости тиристора SCR называется запуском или переключением, и на сегодняшний день наиболее распространенным способом является тот, которым SCR тиристор отпирается в реальной практике. Фактически, SCR тиристоры обычно выбираются так, чтобы их напряжения переключения находились далеко за пределами наибольшего напряжения, ожидаемого от источника питания, поэтому его можно включить (отпереть) только путем преднамеренного импульса напряжения, подаваемого на управляющий вывод.

Обратное переключение

Следует отметить, что SCR тиристоры иногда могут быть выключены (заперты) путем прямого замыкания управляющего вывода и вывода катода или с помощью «обратного переключения» управляющего вывода отрицательным напряжением (относительно катода), чтобы принудительно перевести нижний транзистор в режим отсечки. Я говорю, что это «иногда» возможно потому, что это включает в себя шунтирование всего тока верхнего транзистора через базу нижнего транзистора. Этот ток может быть существенным, что в лучшем случае затрудняет запирание SCR тиристора. Вариация SCR тиристора под названием запираемый тиристор, или GTO (Gate-Turn-Off), облегчает эту задачу. Но даже с GTO тиристором ток управляющего электрода, необходимый для его отключения, может составлять до 20% от тока анода (нагрузки)! Условное обозначение GTO тиристора показано на рисунке ниже.

Условное обозначение GTO тиристора

SCR тиристоры против GTO тиристоров

Тиристоры SCR и GTO имеют одну и ту же эквивалентную схему (два транзистора, соединенные по принципу положительной обратной связи), единственными отличиями являются детали конструкции, предназначенные для предоставления NPN транзистору большего коэффициента β, чем у PNP транзистора. Это позволяет меньшему току управляющего электрода (прямому или обратному) осуществлять большую степень управления проводимостью от катода к аноду, причем открытое состояние PNP транзистора больше зависит от NPN транзистора, чем наоборот. Запираемый тиристор GTO также известен под названием тиристор GCS (Gate-Controlled Switch).

Тиристор в цепи постоянного напряжения

При условии питания схемы постоянным напряжением, тиристор эффективен в качестве переключателя мощной нагрузки. Здесь прибор действует подобно электронной защелке, поскольку после активации остается в состоянии «включено», вплоть до сброса этого состояния вручную. Рассмотрим практическую схему.

Схема 1: КН1, КН2 — кнопки нажимные без фиксации; Л1 — нагрузка в виде лампы накаливания 100 Вт; R1, R2 — резисторы постоянные 470 Ом и 1 кОм

Эта простая схема включения/выключения применяется для управления лампой накаливания. Между тем схему вполне допустимо использовать в качестве коммутатора электродвигателя, нагревателя и любой другой нагрузки, рассчитанной на питание постоянным напряжением.

Здесь тиристор имеет прямое смещённое состояние перехода и включается в режим короткого замыкания нормально разомкнутой кнопкой КН1. Эта кнопка соединяет управляющий электрод У с источником питания через резистор R1. Если значение R1 установить слишком высоким относительно питающего напряжения, устройство не сработает.

Стоит только активировать (нажать) кнопку КН1, тиристор переключается в состояние прямого проводника и остаётся в этом состоянии независимо от дальнейшего положения кнопки КН1. При этом токовая составляющая нагрузки показывает большее значение, чем ток фиксации тиристора.

Преимущества и недостатки использования тиристора

Одним из основных преимуществ использования этих полупроводников в качестве переключателя видится очень высокий коэффициент усиления по току. Тиристор — это устройство, фактически управляемое током.

Катодный резистор R2 обычно включается с целью уменьшения чувствительности электрода У и увеличения возможностей соотношения напряжение-ток, что предотвращает ложное срабатывание устройства.

Когда тиристор защелкнется и останется в состоянии «включено», сбросить это состояние возможно только прерыванием питания или уменьшения анодного тока до нижнего значения удержания.

Поэтому логично использовать нормально замкнутую кнопку КН2, чтобы разомкнуть цепь, уменьшая до нуля ток, протекающий через тиристор, заставляя прибор перейти в состояние «выключено».

Однако схема имеет также недостаток. Механический нормально замкнутый переключатель КН2 должен быть достаточно мощным — соответствовать мощности всей схемы.

В принципе, можно было бы просто заменить полупроводник мощным механическим выключателем. Один из способов преодолеть проблему с мощностью — подключить коммутатор параллельно тиристору.

Схема 2: КН1, КН2 — кнопки нажимные без фиксации; Л1 — лампа накаливания 100 Вт; R1, R2 — резисторы постоянные 470 Ом и 1 кОм

Доработка схемы — включение нормально разомкнутого переключателя малой мощности параллельно переходу А-К, даёт следующий эффект:

  • активация КН2 создаёт «КЗ» между электродами А и К,
  • уменьшается ток фиксации до минимального значения,
  • устройство переходит в состояние «выключено».

Виды тиристоров и их особые свойства

Полупроводниковые технологии все еще разрабатываются и совершенствуются. За несколько десятилетий появились новые разновидности тиристоров, которые имеют некоторые отличия.

  • Динисторы или диодные тиристоры. Отличаются тем, что имеют только два вывода. Открываются подачей на анод и катод высокого напряжения в виде импульса. Называют еще «неуправляемые тиристоры».
  • Тринисторы или триодные тиристоры. В них есть управляющий электрод, но управляющий импульс может подаваться:
    • На управляющий выход и катод. Название — с управлением катодом.
    • На управляющий электрод и анод. Соответственно — управление анодом.

Тиристоры могут управляться как с анода, так и с катода

Есть также разные виды тиристоров по способу запирания. В одном случае достаточно уменьшения анодного тока ниже уровня тока удержания. В другом случае — подается запирающее напряжение на управляющий электрод.

По проводимости

Мы говорили, что проводят тиристоры ток только в одном направлении. Обратной проводимости нет. Такие элементы называют обратно-непроводящие, но существуют не только такие. Есть и другие варианты:

  • Имеют невысокое обратное напряжение, называются обратно-проводящие.
  • С ненормируемой обратной проводимостью. Ставят в схемах, где обратное напряжение возникнуть не может.
  • Симисторы. Симметричные тиристоры. Проводят ток в обоих направлениях.

Различают в основном, по типу проводимости и способу управления

Тиристоры могут работать в режиме ключа. То есть при поступлении импульса управления подавать ток на нагрузку. Нагрузка, в этом случае, рассчитывается исходя из напряжения в открытом виде. Надо также учитывать наибольшую рассеиваемую мощность. Вот в этом случае лучше выбирать металлические модели в виде «летающей тарелки». К ним удобно приделывать радиатор — для более быстрого охлаждения.

Классификация по особым режимам работы

Еще можно выделить следующие подвиды тиристоров:

  • Запираемые и незапираемые. Принцип работы тиристора незапираемого немного другой. Он находится в открытом состоянии когда плюс приложен к аноду, минус — на катоде. Переходит в закрытое состоянии при смене полярности.
  • Быстродействующие. Имеют малое время перехода из одного состояния в другое.
  • Импульсные. Очень быстро переходит из одного состояние в другое, используется в схемах с импульсными режимами работы.

Основное назначение — включение и выключение мощной нагрузки при помощи маломощных управляющих сигналов

Основная область использования тиристоров — в качестве электронного ключа, служащего для замыкания и размыкания электрической цепи. В общем много привычных устройств построены на тиристорах. Например, гирлянда с бегущими огнями, выпрямители, импульсные источники тока, выпрямители и многие другие.

Снятие вольт-амперной характеристики тиристора

Для съема вольт-амперной характеристики тиристоров применяются следующие схемы:

(A) — схема для триодного тиристора, (B) — схема для диодного тиристора.

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Тиристоры относятся к приборам, управляемым силой тока. Так что снятие вольт-амперной характеристики производится путем задания силы тока анод — катод тиристора с некоторым шагом и измерения напряжения на нем.

В схемах применяются регулируемые источники стабильного тока. Чтобы иметь возможность достоверно получить всю вольт-амперную характеристику, нужно использовать именно источники тока в цепи анода. Применение вместо них переменных резисторов является распространенной ошибкой и приводит к тому, что данные на участке отрицательного дифференциального сопротивления получаются недостоверными. В результате бытует мнение, что рабочую точку тиристора вообще нельзя выбрать на этом участке. А это не так. Убедиться в том, что тиристоры прекрасно работают на этом участке можно, собрав две простые схемы: усилитель сигнала и генератор синусоидальных колебаний на динисторе. Дело в том, что в случае применения переменного резистора в цепи анода на участке отрицательного сопротивления полное сопротивление, подключенное к источнику питания, резко изменяется при изменении силы тока. Что в свою очередь влияет на эту самую силу тока. В результате задать нужное значение силы тока через тиристор на этом участке не удается.

Для триодных тиристоров (тринисторов / симисторов / триаков) кроме задания силы тока анод — катод, нужно задать силу тока управляющего электрода. Здесь тоже можно использовать источник тока, как это показано на схеме (A), но можно подключить вместо него резистор, так как падение напряжения управляющий электрод — катод практически не зависит от силы тока управляющего электрода и силы тока анода.

Ссылка на основную публикацию