Что такое тангенс угла диэлектрических потерь?

Эффект поляризации диэлектрика и проницаемость

Под воздействием электрического поля в диэлектрике имеет место поляризация — явление, связанное с ограниченным смещением зарядов или поворотом электрических диполей. Данное явление характеризует вектор электрической поляризации P{\displaystyle \mathbf {P} }, равный дипольному моменту единицы объёма диэлектрика. В отсутствие внешнего поля диполи ориентированы хаотично (см. верхний рис.), за исключением особых случаев спонтанной поляризации в сегнетоэлектриках. При наличии поля диполи в большей или меньшей степени поворачиваются (нижний рис.), в зависимости от восприимчивости χ(ω){\displaystyle \chi (\omega )} конкретного материала, а восприимчивость, в свою очередь, определяет проницаемость ε(ω){\displaystyle \varepsilon (\omega )}. Помимо дипольно-ориентационного, имеются и поляризации. Поляризация не изменяет суммарного заряда в любом макроскопическом объёме, однако она сопровождается появлением связанных электрических зарядов на поверхности диэлектрика и в местах неоднородностей. Эти связанные заряды создают в диэлектрике дополнительное макроскопическое поле, как правило, направленное против внешнего наложенного поля. В итоге тот факт, что εa≠ε{\displaystyle \varepsilon _{a}\neq \varepsilon _{0}}, является следствием электрической поляризации материалов.

Как определить тангенс угла диэлектрических потерь

В силовых трансформаторах тангенс угла рассчитывается как диэлектрик конденсатора. Берется в расчет угол, который дополняет до прямого, основной угол между сдвигами фаз тока и напряжения.

Для измерения принимают, что конденсатор относится к идеальному типу. Он может быть включен последовательным образом, то есть в последовательно включенным сопротивлением активной нагрузки, или по параллельной схеме. Для первой мощность составит Р=(U2ωtgδ)/(1+tg2δ), а для второй — Р=U2ωtgδ. Угол по этим расчетам вычислить несложно, зная емкость конденсатора и показатели сопротивления. Обычно значение его не превышает десятых или сотых долей единицы, определяется в графиках процентами. При этом увеличиваются, если увеличивается напряжение и частота работы. Для снижения коэффициента используются изоляционные материалы.

Подготовка к измерениям.

Если электрофизические показатели определяют в пробе, взятой из трансформатора, или в пробе, подготовленной для заполнения бака, ее предварительную обработку не проводят.
При испытании масла после транспортировки или хранения на складе определяют электрофизические показатели сухого масла, проводя его предварительную сушку. Для этого масло пропускают через фильтрующую воронку при температуре 60…80°С и при избыточном давлении 1333…2666 Па (10…20 мм рт. ст.) с последующей выдержкой при таких условиях в тонком (5… 10 мм) слое в течение 50 мин. Перед проведением первого измерения ячейку сначала заполняют испытуемым маслом и, не проводя измерения, жидкость выливают. Затем повторно заполняют ячейку до уровня на 3…5 мм выше нижнего края охранного электрода (поз. 4), помещают ее в предварительно нагретый до температуры испытания термостат, присоединяют к электрической схеме и после достижения ячейкой заданной температуры проводят измерение. Для измерений при комнатной температуре термостат не используют. Отсчет значения tg5 проводят не более чем через 3 мин после включения напряжения.
При проведении второго измерения чистую собранную ячейку нагревают до температуры, на 5… 10°С превышающей заданную температуру измерения, заполняют порцией нагретой жидкости и выливают ее. Ячейку вновь заполняют порцией нагретой жидкости и выдерживают 20 мин при заданной температуре, после чего определяют tgS. Каждое из двух измерений предпочтительно проводить в своей отдельной ячейке. Обработка результатов измерений. Расхождение между результатами двух измерений tgδ не должно превышать 15 % от значения большего результата плюс 0,0002, Если расхождение между результатами измерений превышает указанные пределы, то продолжают измерения на новых порциях диэлектрика пока не получат удовлетворительное расхождение. Расчет значений tg δ проводится по следующим формулам:

при проведении измерений в трехзажимной ячейке

(6)

при проведении измерении в двухзажимной ячейке

(7)

где С0, tgδ — соответственно емкость (Ф) и тангенс угла диэлектрических потерь пустой измерительной ячейки; Сь tgδ — емкость (Ф) и тангенс угла диэлектрических потерь измерительной ячейки, заполненной испытываемым маслом; Сп — паразитная емкость ячейки (обусловлена наличием твердых электроизоляционных прокладок, пустот, емкости проводов и т.д.), Ф; Ск — емкость измерительной ячейки, заполненной жидкостью с известным значением диэлектрической проницаемости £к (калибровочной жидкостью) и с tg δ
За результат измерения tg δ принимают меньшее из двух полученных в опытах значений.

Абсолютная диэлектрическая проницаемость вакуума

Электрическая постоянная, она же «абсолютная диэлектрическая проницаемость вакуума», в системе единиц СИ равна ε≈8,85⋅10−12{\displaystyle \varepsilon _{0}\approx 8{,}85\cdot 10^{-12}} Ф/м (имеет размерность L−3M−1T4I2).
В системе СГС эта же постоянная составляет ε=14π{\displaystyle \varepsilon _{0}=1/4\pi }, однако часто в СГС вообще не задействуют ε{\displaystyle \varepsilon _{0}}, надлежащим образом адаптируя формулы (скажем, закон Кулона: F=εr−1⋅|q1q2|r122{\displaystyle F=\varepsilon _{r}^{-1}\cdot |q_{1}q_{2}|/r_{12}^{2}}).
Электрическая постоянная связана с магнитной постоянной и скоростью света в вакууме:

εμ=c−2{\displaystyle \varepsilon _{0}\mu _{0}=c^{-2}}

Ниже все формулы приводятся для СИ, а символ ε{\displaystyle \varepsilon } используется как замена εr{\displaystyle \varepsilon _{r}} (εa=εε{\displaystyle \varepsilon _{a}=\varepsilon _{0}\varepsilon }).

Факторы, которые увеличивают тангенс угла диэлектрических потерь

Специалисты выделяют несколько факторов, которые приводят к увеличению тангенса. На первый взгляд они кажутся несущественными, но в итоге обуславливают эффективность работы трансформатора.

Наличие мыла в маслах

Мыло в маслах, которые используются для смазки обмоток трансформатора, приводят к изменению численного показателя. Это объясняется тем, что мыло провоцирует дополнительное увлажнение, приводящие к снижению удельного сопротивления. Нюансы увеличивают проводимость, что влияет на рост тангенса.

Образования кислых продуктов старения

Кислотные продукты старения вызывают порчу вторичной и первичной обмотки. В свою очередь уменьшается проводимость, образуются дополнения на кристаллических решетках. Изменение в худшую сторону физико-технических характеристик диэлектрика приводит у увеличению потерь.

Одной из важнейших задач при использовании транспорта является уменьшение угла. Это позволит оптимизировать работы и избежать траты энергии в холостую.

Что способствует повышению диэлектрических потерь

Норма диэлектрических потерь прописывается в инструкции к определенному прибору. Есть факторы, вызывающие колебания и отклонения от нормы (обычно это повышение). Различают несколько типов:

  • за чет электропроводности сквозного типа;
  • ионизирующие;
  • резонансные;
  • обусловленные поляризацией.

Если частотный и температурный график зависимости понятен интуитивно, то дело обстоит иначе с другими факторами, приводящими к негативному явлению

Обратите внимание, что нагревание трансформаторного масла приводит к более интенсивному смещению, иногда даже смещаются заряды диэлектрика. При стабильных низких показателях температуры вязкость не меняется, следовательно, нет смещения диполей

А вот увеличение частоты обуславливает улучшенную проводимость. Показатели тока емкостного могут смещать диполи, при больших показателях уменьшается трение. Рост угла вызывает и проявление влаги в любом виде (это может быть и газообразное состояние). Приводит к повышению показателя ионизация, при этом увеличивается рост напряжения.

Диэлектрические потери в твердой изоляции

В реальном трансформаторе имеется не только жидкая, но и твердая изоляция, пропитанная маслом. Поэтому повышение диэлектрических потерь в маслах в процессе эксплуатации, не связанное с их качеством, может быть обусловлено растворением в них лаков трансформатора, сопровождающимся, как правило, повышением кислотного числа. В свежих маслах в коллоидном состоянии могут находиться смолы и мыла. В процессе эксплуатации коллоидными веществами, накапливающимися в масле, могут быть:

  1. компоненты лака обмоток и старого шлама масел;
  2. мыла, образующиеся в результате взаимодействия кислых продуктов старения масел с метлами трансформатора;
  3. кислые шламоподобные продукты, не содержащие в своем составе металла, например: кислоты, в том числе асфальтеновые, плохо растворимые в масле, смолы, асфальтены, карбены и другие продукты окисления;

При недостаточно совершенной конструкции трансформаторов имеются места с повышенной напряженностью электрического поля, в которых затруднена циркуляция масла. Именно в этих местах за счет высокой проводимости масла повышается температура. В результате этого усилено идут процессы старения. Образующиеся при этом продукты в свою очередь повышают tgδ масла и твердой изоляции. Эти взаимосвязанные и ускоряющие друг друга процессы, ведущие к локальному перегреву и старению жидкой и твердой изоляции, в конечном счете могут привести к пробою. Это опасение является весьма серьезным и подкрепляется рядом случаев пробоя трансформаторов, эксплуатировавшихся на маслах с повышенным tgδ.

Ссылка на основную публикацию