От 200 до 20000 px: пять десятилетий эволюции фотосъемки марса из космоса (с картинками и цифрами)

Научная аппаратура

На аппарате установлены следующие научные приборы:

  • Гамма-лучевой спектрометр GRS. Это набор из трёх инструментов — собственно гамма-спектрометра GRS, детектора нейтронов

    Детектор HEND (High Energy Neutron Detector) был изготовлен в Лаборатории космической гамма-спектроскопии ИКИ РАН и используется для обнаружения подповерхостных запасов водяного льда и элементного анализа состава поверхности по измерению потоков эпитепловых, резонансных и быстрых нейтронов. Прибор представляет собой спектрометр с четырьмя независимыми детекторами нейтронов. Три детектора эпитепловых нейтронов (Small Detector, Medium Detector, Large Detector) построены на основе пропорциональных счетчиков нейтронов 3He, четвертый детектор нейтронов высоких энергий (SC) на основе органического сцинтиллятора из стильбена C14H12, окруженного активной антисовпадательной защитой из кристалла CsI:Tl3+. Пропорциональные счётчики детектируют нейтроны с энергиями 0,4 эВ — 1 кэВ, 10 эВ — 100 кэВ и 10 эВ — 1 МэВ. Детектор SC используется для регистрации нейтронов с энергиями выше 1 МэВ.

    высоких энергий HEND и детектора тепловых нейтронов NS.

  • Аппаратура MARIE (Mars Radiation Environment Experiment) предназначена для изучения радиационной обстановки на трассе перелёта и на орбите спутника Марса с последующим анализом возможных доз облучения и его последствий для человека. Инструмент представляет собой спектрометр энергичных частиц в диапазоне 15-500 МэВ на нуклон с полем зрения 56° и двумя кремниевыми детекторами размером 25,4×25,4 мм.
  • Прибор THEMIS (Thermal Emission Imaging System) предназначен для многоспектральной съёмки поверхности Марса в видимой и инфракрасной части спектра. Прибор создан на базе камеры MARCI от MCO, имеет поле зрения 4,6×3,5° и 2,9×2,9° и разрешение — 100 и 20 м в инфракрасном и видимом диапазоне соответственно. С помощью этой камеры была получена точная карта Марса (пространственное разрешение карты составляет 100 метров для всей территории Красной планеты). Для её составления ученые использовали 21 тысячу фотографий, сделанных искусственным спутником за восемь лет.

Sky Crane – посадочная система будущего

Празднование удачной посадки Curiosity было по большей части связано с тем, что она стала успешным тестированием посадочного механизма нового типа. Вместо того, чтобы смягчать падение аппарата воздушной подушкой (как было со Spirit и Opportunity), в NASA решили сделать платформу, парящую над поверхностью планеты сперва на парашюте, а затем на ракетных двигателях и спускающую марсоход на тросе. Когда Curiosity достиг марсианского грунта, он отсоединил трос, и платформа Sky Crane отлетела в сторону, упав в шестистах метрах от места посадки.

Те, кто играл в Starcraft, подмечают: сцена явно выглядит знакомой

До посадки в NASA о ней говорили как о “семи минутах ужаса”: операция длилась семь минут, и если бы что-то пошло не так, вмешаться было бы невозможно. Сядь Curiosity кверху дном или на бок, помочь марсоходу уже не вышло бы.

Теперь, когда известно, что Sky Crane (“Небесный кран”) работает как положено, в NASA говорят о перспективности этого способа посадки тяжёлых аппаратов на неровную поверхность. Она избавляет инженеров от необходимости придумывать, как аппарат будет выбираться из посадочного модуля, к тому же даёт возможность свободно выбирать пункт назначения.

На тот момент, когда ракета с Curiosity взлетала с Земли, учёные ещё не утвердили место, куда должен был сесть марсоход. Благодаря Sky Crane у них появилась возможность менять решение в любую минуту: в момент крушения платформы на борту ещё оставалось около ста килограммов горючего, которое при других обстоятельствах могло пригодиться при посадке в другую точку.

Будет ли Curiosity проезжать место падения Sky Crane? Увы, нет, но лишь потому, что в качестве целей выбраны другие интересные объекты.

Немного о самой планете

После Земли, Марс практически единственное место в Солнечной системе, которое могло бы приютить людей. Но есть много вещей, которые мы должны преодолеть на красной планете.

Орбита

Орбита и сезоны планеты

Орбита планеты “бога войны” по эксцентричности занимает второе место в Солнечной системе. Только орбита Меркурия имеет больший эксцентриситет. В перигелии он находится на расстоянии 206,6 млн. км от Солнца, а в афелии 249,2 млн. км. Среднее расстояние от него до Солнца (так называемая большая полуось) равна 228 млн. км. Один оборот у Марса занимает 687 земных дней. Расстояние до Солнца изменяется в зависимости от гравитационного влияния других планет, а эксцентриситет может измениться с течением времени. Совсем недавно, примерно 1,350 млн. лет назад он имел почти круговую орбиту.

На своей ближайшей точке, он находится примерно в 55,7 млн. км от Земли. Планеты максимального сближаются друг с другом каждые 26 месяцев. Из-за огромного расстояния, полет на Марс займет от 10 месяцев до года, в зависимости от того, сколько топлива мы используем.

Размер

Сравнительный размер планет

Марс очень мал и глобальная топографическая карта Марса показывает, что площадь его поверхности весьма невелика. Размер Марса всего 6792 км в поперечнике, это около половины диаметра, и только 10% от массы Земли. Спутниковая карта Марса Google позволяет рассматривать планету как если бы вы могли стоять на ее поверхности. Марса, но к сожалению, не передает нам того, что мы испытывали бы всего 30% от силы тяжести на поверхности Земли.

Сезоны

Туман на вершине вулкана, расположенного в северном полушарии планеты.

Марс, как и все планеты Солнечной системы, имеет наклон оси, составляющий около 25,19 градусов. Этот наклон, похож на Земной, так что у него есть сезоны. Марсианские сезоны дольше Земных, потому что год на нем почти вдвое длиннее земного года. Резко меняющееся расстояние между Марсом в афелии и перигелии означает, что его сезоны не сбалансированы.

Сутки

Один день на Марсе всего на несколько минут дольше, чем на Земле. Можно быстро адаптироваться. Еще одним преимуществом является то, что наклон Марсианской оси очень похож на Земной, жаль, что карта Марса онлайн со спутника этого не показывает.

Условия

Так могла выглядеть планета миллиарды лет назад

Но Марс имеет весьма негостеприимную окружающую среду. Его невероятно тонкая атмосфера, составляет всего 1% от толщины атмосферы Земли. Она состоит в основном из углекислого газа. Вы не сможете дышать в такой атмосфере. Температура ночью может опускаться до -100 °C, даже в разгар лета на экваторе. Интерактивная карта Марса в высоком разрешении показывает огромные полярные шапки льда на полюсах планеты.

Южный полюс Марса

Одна из важнейших проблем заключается в отсутствии у планеты магнитосферы. Здесь, на Земле, радиоактивные частицы из космоса отклоняются в сторону от поверхности, но на Марсе никакой защиты.

B напоследок рекомендую посмотреть научно-популярный фильм Марс: подполье (The Mars Underground).

Инженер аэрокосмонавтики и Президент Марсианского Сообщества, Роберт Зубрин мечтает об отправке людей к красной планете в ближайшие 10 лет. Если понравилась запись, то расскажи о ней друзьям!

Орбитальный зонд «Марс-экспресс»

«Марс-экспресс» — космический аппарат Европейского космического агентства, предназначенный для изучения Марса. 2 июня 2003 г. стартовал на космодроме «Байконур» с помощью ракеты-носителя «Союз-ФГ». Измерения приборов позволили получить ряд важных научных результатов, многие из которых только готовятся к научным публикациям. Впервые обнаружен водяной лёд в южной полярной шапке в конце марсианского лета. «Марс-экспресс» обнаружил в атмосфере Марса метан, что может свидетельствовать о наличии жизни на планете (метан не может долго находится в марсианской атмосфере, следовательно его запасы пополняются либо в результате жизнедеятельности микроорганизмов, либо вследствие геологической активности). Для поддержания его количества в атмосфере на Марсе должен быть источник метана. Таким источником могла бы быть тектоническая деятельность. Благодаря снимкам косморобота, учёные смогли сконструировать и представить трёхмерные модели марсианских ландшафтов.

Станция обнаружила плотные облака из сухого льда, которые отбрасывают тень на поверхность планеты и даже влияют на её климат.

По холодной пустыне

На первом же панорамном снимке местности, переданном телекамерами Spirit, видны холмы у горизонта, которые и стали главной целью его путешествия. По дороге к ним он «заглянул» сверху в кратер Бонневилл, названный именем древнего озера в Северной Америке, но спускаться внутрь не стал. Далее в направлении к холмистой местности он двигался по равнинному дну кратера Гусев, попутно выполняя анализы химического состава множества камней. В результате этого путешествия были обнаружены отложения грунта с косой слоистостью, происхождение которых связано, скорее всего, опять же с некогда текущей здесь водой. Взбираясь по склону холма, к началу марта 2005 года Spirit был уже на высоте 60 м над равниной. По высоте до макушки холма оставалось еще около 30 м, но реально длина трассы передвижения марсохода была намного больше. К этому времени Spirit прошел в общей сложности 4,5 км по поверхности Марса.

Марсоход Opportunity перемещался не так быстро и к началу марта 2005 года прошел 2,5 км, что тоже неплохо. Посадку он совершил в кратере Eagle (Орел) — так назывался лунный модуль корабля Apollo-11, первой экспедиции людей на Луну в 1969 году. Затем марсоход проехал вблизи кратера Фрам и полгода по земному счету (четверть года по марсианскому) работал внутри кратера Эндьюранс. По форме и размерам (его диаметр 130 м) он напоминает чашу футбольного стадиона. Крутые склоны этого кратера состоят из многочисленных слоев, изучение которых могло бы приоткрыть тайны марсианского прошлого. И действительно, оказалось, что эти слои сильно различаются по химическому составу: в более глубоких, то есть более древних, содержание хлора в три раза больше, чем в лежащих выше — более молодых. Это может говорить о том, что в кратере находилось соленое озеро, из которого и осели хлорные соединения. Медленно перемещаясь по южному кратерному склону и дну, марсоход достиг участка, ограниченного, с одной стороны, почти отвесным уступом, а с остальных — рыхлыми песками, в которых колеса ровера стали буксовать. Таким образом, доступным оказался только путь назад, по уже пройденному маршруту.

На 181-й день Opportunity благополучно выбрался из кратера на поверхность плато Меридиана, где его ожидала необычайная встреча.

Большое видится на расстоянии

Если современному геологу показать первую карту Марса с сетью прямых линий, полученную итальянским астрономом Скиапарелли в 1877 году, то он предположит, что перед ним карта разломов планетной коры. Сегодня на глобальной геологической карте Земли зафиксировано множество прямых линий, протянувшихся на тысячи километров и по материкам, и по дну океанов. Эти крупные разломы рассекают земную кору на десятки и сотни километров в глубину, поэтому они и получили название глубинных разломов. Во времена Скиапарелли о них ничего не было известно, однако он считал, что симметричность и прямолинейность каналов вовсе не служат указанием на искусственное происхождение. Скиапарелли писал, что никто же не считает цветок искусственным на основании того, что он имеет идеальную симметрию. Сетку каналов на Марсе он сравнивал и с сеткой трещин на фарфоре. Сопоставление телескопических зарисовок с результатами геологических исследований по космическим снимкам Марса показало, что так называемые каналы соответствуют линейным зонам тектонических нарушений, как выраженных в рельефе в виде понижений, так и не находящих отражения в высоте рельефа. Часто эти полосы представляют собой зоны концентрации разломов и кратеров. При взгляде в телескоп отдельные мелкие образования неразличимы, а становятся видны лишь крупные структуры строения марсианской коры. Подобное же явление обнаружилось и на Земле, когда геологи начали изучать ее по космическим снимкам — оказалось, что на них отчетливее просматриваются крупные структуры, имеющие глубинную природу. Однако убедительного объяснения того, почему «каналы» Марса темнее окружающих районов и почему они видны не всегда, так до сих пор и не найдено.

Что сейчас?

На орбитах вокруг Марса работают три искусственных спутника:

  • «Марс Одиссей», орбитальный аппарат НАСА, исследующий Марс. Главная задача, стоящая перед аппаратом, заключается в изучении геологического строения планеты и поиске минералов (с 24 октября 2001 года). Аппарату удалось получить данные, свидетельствующие о крупных запасах воды на Марсе.
  • «Марс-экспресс», космический аппарат Европейского космического агентства, предназначенный для изучения Марса (с 25 декабря 2003 г.)
  • Марсианский разведывательный спутник, многофункциональная автоматическая межпланетная станция НАСА, предназначенная для исследования Марса, (с 10 марта 2006 г.). Запущен 12 августа 2005 г. с космодрома на мысе Канаверал. Содержит ряд научных приборов: камеры, спектрометры, радары, которые необходимы для анализа рельефа, поиска минералов и льда на Марсе. Телекоммуникационная система спутника передаёт Землю данных больше, чем все предыдущие межпланетные аппараты вместе взятые. Кроме того, используется в качестве сильного спутника-ретранслятора для других исследовательских программ.

В настоящее время на поверхности Марса работают марсоходы: «Оппортьюнити» и «Кьюриосити».

«Оппортьюнити» работает с 25 января 2004 г. Задачи:

  • Поиск и описание разнообразия горных пород и почв, которые свидетельствуют о прошлой водной активности планеты, поиск образцов с содержанием минералов.
  • Определение распространения и состава минералов, горных пород и почв, которые окружают место посадки.
  • Определить, какие геологические процессы сформировали рельеф местности и химический состав.
  • Проведение наблюдений за поверхностью, сделанных при помощи инструментов Марсианского разведывательного спутника.
  • Поиск железосодержащих минералов.
  • Классификация минералов и геологического ландшафта, а также определение процессов сформировавших их.
  • Оценка условий, которые могли бы быть благотворны для зарождения жизни на Марсе.

«Кьюрио́сити» — автономная химическая лаборатория. Аппарат должен будет за несколько месяцев пройти от 5 до 20 километров и провести полноценный анализ марсианских почв и компонентов атмосферы.

Конструкция

Марс Одиссей обладал стартовой массой космического аппарата  725 кг, масса самого спутника составляла 331,8 кг, из них 44 с половиной килограмма приходилось на научную аппаратуру. Своей конструкцией аппарат походит на стартовавшую на два года ранее АМС Mars Climate Orbiter, но  масса Марс Одиссей  на 100 кг больше. Размеры аппарата составляют 2,2 на 2,6 на 1,7 метра, развёрнутая солнечная батарея 5,8 метра. Как и MCO, структурно спутник можно разделить на  два основных отсека — двигательной установки и приборного отделения, входящего в состав платформ служебного оборудования и научной аппаратуры. Особенностью Марс Одиссей  стала развертываемая шестиметровая штанга, которая несет на себе датчики гамма-спектрометра GRS.

Двигательная установка состоит из основного двигателя с тягой 640 Ньютон, работающего на гидразине и азотном тетраоксиде; двигателей ориентации и двигателей малой тяги.

Подсистема электропитания состоит из трехсекционной солнечной батареи общей  площадью 7 кв. метров с фотоэлементами на основе арсениде галлия, блока распределения питания, аккумуляторной батареи ёмкостью 16 Ампер * час.

В основе подсистемы управления и обработки данных лежит продублированный, стойкий к воздействию радиации. процессор RAD 6000 со 128 мегабайтами оперативной памяти и 3 мегабайтами постоянного запоминающего устройства. Данные видеосистемы хранятся на отдельной непродублированной карте памяти ёмкостью 1 гигабайт.

Подсистема связи состоит из средств связи с Землёй, работающих  в диапазоне X, и аппаратуры для диапазона UHF для приёма сигналов аппаратов, работающих на Марсе. Спутник оборудован антеннами малого, среднего и высокого усиления.

Все на Марс — атака 2003 года

В конце 2003 года космическим кораблям, прибывавшим один за другим с Земли на Марс, было немного тесно на его орбите. Вокруг Красной планеты к этому времени уже вращались два запущенных ранее спутника — 2001 Mars Odyssey и Mars Global Surveyor. Японская межпланетная станция Nozomi («Надежда») первой из новичков приблизилась к Марсу, но выйти на его орбиту так и не смогла, а, пролетев на расстоянии 1 000 км от планеты, ушла навсегда в глубины космоса. Вслед за несбывшейся японской надеждой потерпел неудачу и британский спускаемый модуль Beagle-2, сигнал от него так и не поступил. Космический Beagle не смог повторить успех одноименного корабля, на котором совершил кругосветное плавание Чарлз Дарвин. Однако основная станция Mars Express Европейского космического агентства, доставившая посадочный аппарат, успешно вышла на орбиту и стала первым европейским спутником Марса.

Следующими к Красной планете приблизились запущенные NASA два аппарата-близнеца с марсоходами Spirit и Opportunity на борту. Обе станции с небольшим разрывом во времени совершили благополучную посадку, которая выглядела довольно эффектно. Жители Марса, существуй они на самом деле, были бы весьма удивлены зрелищем, развернувшимся над экваториальной областью их планеты 3 января 2004 года по земному календарю. Сначала высоко в небе промелькнул огненный след, напоминающий метеор. Там, где он погас, появилась светлая точка, плавно перемещавшаяся по небу и постепенно увеличивающаяся в размере. Марсиане могли бы назвать ее парашютом, будь они знакомы с таким средством передвижения по воздуху. Затем под парашютом стал раздуваться белый кокон, напоминающий комок гигантских слипшихся шариков для пингпонга, состоящий из 24 выпуклых полусфер. В непосредственной близости от поверхности Марса парашют, отброшенный направленным взрывом пиропатронов, отскочил в сторону, вспыхнули и погасли тормозные двигатели и с высоты 10—15 м кокон упал на планету, подпрыгнул на несколько метров, еще раз упал, снова подпрыгнул — и так пять раз. Каждый прыжок становился все ниже и ниже, пока странный предмет не замер неподвижно, теряя свою форму, и наконец совсем обмяк — как будто из надувной игрушки выпустили воздух. Когда сдувшаяся оболочка опала на грунт, то обнаружилось, что внутри нее находится металлическая платформа, на которой расположена сложной формы конструкция с шестью колесами — по три с каждого бока. Причем колеса были странно вывернуты вверх и прижаты к бокам. Через некоторое время агрегат «ожил» и, расправив одну за другой колесные опоры, поднялся во весь рост, подобно новорожденному жеребенку. 20 дней спустя вся эта картина повторилась с точностью до мельчайших деталей, но уже совсем в другом районе Марса — на противоположной стороне планеты. Так началась марсианская одиссея двух роботов-вездеходов, прибывших с Земли, чтобы искать ответ на давний вопрос: «Есть ли жизнь на Марсе?»

Первые встречи

Снимки Марса с близкого расстояния впервые передала на Землю американская автоматическая станция Mariner-4. Она была запущена в конце 1964 года, а через семь с половиной месяцев, 14 июля 1965-го, пролетела в 9 800 км над поверхностью Марса. В результате было получено 22 телевизионных изображения, которые охватывали около 1% поверхности планеты. Переданные со станции по радио чернобелые снимки Марса прорисовывали на Земле вручную. Для этого на огромных разграфленных листах бумаги закрашивали клеточку за клеточкой в соответствии с данными о яркости каждого пикселя изображения. Затем эти листы были сфотографированы и уменьшены, чтобы отдельные квадратики, из которых состояло изображение, стали неразличимы. Вместо ожидавшихся морей и каналов на снимках предстала поверхность, очень похожая на лунную, — покрытая кратерами. Когда же шесть лет спустя была проведена глобальная съемка Марса с его искусственного спутника Mariner-9, стало ясно, что первые фотографии планеты пришлись на район с рельефом так называемого материкового типа, который занимает более половины поверхности Марса. Наряду с таким «лунным» рельефом нагорий на Марсе были обнаружены и обширные низменности с равнинным рельефом, расположенные преимущественно в Северном полушарии, а также вулканические плато в приэкваториальных районах, увенчанные вулканами, высота которых достигала 25 км. На поверхности Марса открылось большое разнообразие форм рельефа, которые невозможно было разглядеть с Земли из-за их сравнительно небольших размеров — кратеры, сухие русла рек, каньоны, уступы, узкие расщелины, поля дюн и барханов.

Охотники за водой

Предшественникам марсоходов — двум неподвижным станциям Viking, прилетевшим на Красную планету почти 30 лет назад — в 1976 году, — не удалось найти следов жизни с помощью биологических анализаторов. Поэтому перед марсоходами была поставлена иная задача — поиск следов жидкой воды, оставшихся в геологических формациях. Сейчас условия на поверхности Марса таковы, что вода в жидком виде там существовать не может — она замерзнет и быстро испарится в холодной и чрезвычайно разреженной атмосфере. Но на поверхности планеты по снимкам с искусственных спутников обнаружены многочисленные речные русла — с притоками, островами, рукавами и заводями. Это означает, что в прошлом климат здесь был иной и жидкая вода текла по поверхности планеты. Однако, чтобы «прорезать» речное русло, достаточно и кратковременного выброса большой водной массы. А для зарождения жизни требуется весьма продолжительное существование влажного климата. Поэтому перед марсоходами была поставлена задача по поиску геологических образований, для формирования которых требуются долгоживущие водоемы. Обнаружение таких следов может свидетельствовать о том, что когда-то необходимые условия для зарождения жизни на Марсе были.

Марсоходы были направлены в такие районы, где следы воды можно было бы отыскать с наибольшей вероятностью. Так, Spirit совершил посадку в кратере Гусев, расположенном на 15° южной широты и 185° западной долготы. Диаметр этого кратера исчисляется 180 км, его размеры схожи с Аральским морем. В кратер впадает русло древней реки, в котором сейчас нет воды. Изучение снимков со спутников показало, что в прошлом кратер Гусев был озером. Назван же он в честь русского астрофизика Матвея Матвеевича Гусева (1826—1866), который создал одну из первых в мире фотографических служб Солнца. К красноармейцу Гусеву, совершившему полет на Марс в романе Алексея Толстого «Аэлита», название кратера отношения не имеет, хотя совпадение забавное.

Второй марсоход — Opportunity — опустился на плато Меридиана, расположенное почти на экваторе на противоположной от кратера Гусев стороне Марса. По наблюдениям со спутников в этом районе Марса была обнаружена повышенная концентрация гематита — железосодержащего минерала, который на Земле образуется в водной среде.

Ледниковые периоды на Марсе

Климат на Марсе холодный и сухой. Вся планета скована вечной мерзлотой, причем у полюсов слой пород, постоянно находящихся при отрицательной температуре, по расчетам, достигает 5—6 км, а на экваторе уменьшается до 1—1,5 км. Но в прошлом на Марсе бывали периоды и с еще более суровым климатом. Изучение космических снимков показало, что на планете есть обширные области с характерным «сглаженным» обликом рельефа, образовавшимся под воздействием какихто отложений. Выяснилось, что от 0,5 до 2 млн. лет назад на планете было намного холоднее. Белые полярные шапки круглый год располагались вокруг обоих полюсов, занимая большую площадь, чем нынешняя зимняя полярная шапка, появляющаяся попеременно вокруг то Северного, то Южного полюса. Древние полярные шапки простирались примерно до 30 градуса широты. На Земле это соответствовало бы снеговой шапке от Северного полюса до Египта, Мексики, Южного Китая и от Южного полюса до Австралии, Южной Африки и Бразилии. Из-за меньшего по сравнению с Землей количества воды на Марсе эти полярные шапки состояли не из массивного льда, как при оледенениях Земли, а из рыхлого снежного покрова сравнительно небольшой толщины. На Марсе был не великий ледниковый, а великий снежный период. Каждая из снежных шапок занимала четверть поверхности планеты, а в сумме под снегом постоянно находилась половина Марса. Когда климат потеплел и снега растаяли, то пыль, веками оседавшая на полярную шапку, оказалась на поверхности планеты, покрыв ее слоем, сгладившим мелкие детали, что и обнаружилось на снимках со спутников. Так что сегодня поверхность Марса, среднегодовая температура которой –60°, представляет собой скованную морозом каменистую пустыню.

Ссылка на основную публикацию