Конденсаторное торможение асинхронных электродвигателей

5.13. ПУСК, РЕГУЛИРОВАНИЕ ЧАСТОТЫ ВРАЩЕНИЯ И ТОРМОЖЕНИЕ АСИНХРОННОГО ДВИГАТЕЛЯ.

На практике замечено, что
ток, потребляемый обмоткой статора в первый момент пуска двигателя, очень большой.
В ряде случаев он превышает номинальный ток в 6 — 10 раз.

Такой нагрузки может не
выдержать не только питающая сеть, но и сама обмотка статора. Поэтому для пуска
крупных асинхронных двигателей применяют специальные устройства, снижающие пусковой
ток. На рис. 5.13.1. показаны схемы пуска мощных двигателей с помощью реакторов
и автотрансформатора.

Принцип ограничения тока
заключается в том, что к статорной обмотке двигателя на период пуска подводится
пониженное напряжение. После разгона его дополнительные устройства от двигателя
отключаются.

Иногда для снижения напряжения,
подаваемого в обмотки статора, изменяют схему переключения обмоток. Например,
асинхронный двигатель нормально работает по схеме «треугольник». Если
на период пуска его обмотки включить «звездой», то на каждую фазу
придется напряжение в раз меньшее.

Двигатели с фазным ротором
пускаются в работу с помощью дополнительных сопротивлений. Вводя дополнительные
сопротивления в цепь ротора, добиваются ограничения пускового тока.

Регулирование частоты вращения асинхронного двигателя определяется формулой:


.

Здесь возможны три различных способа реализации:

Первый заключается в изменении
частоты тока f, подаваемого в обмотки двигателя. Этот способ позволяет осуществлять
плавное регулирование частоты вращения двигателя. Регуляторы частоты тока пока
еще очень дороги, поэтому они мало применяются.

Второй способ связан с изменением пар полюсов p на статоре.

Укладывая на статоре несколько
обмоток, рассчитанных на различные числа пар полюсов (р=1,2,3,4),
можно обеспечить различные частоты вращения магнитного поля (соответственно:
3000, 1500, 1000, 750 об/мин). Подключение к сети необходимой обмотки производится
специальным переключателем.

Этот способ регулирования
ступенчатый, но в ряде металлообрабатывающих станков он нашел самое широкое
применение (например, для привода продольно-строгального станка при рабочем
и обратном ходе).

Третий способ регулирования
частоты вращения возможен лишь для двигателей с фазным ротором. Здесь изменение
скольжения S достигается введением в цепь ротора регулировочных сопротивлений.
Такие схемы широко используются на грузоподъемных кранах.

К категории регулирования
вращения вала двигателя относится так называемое реверсирование, т.е. изменение
направления вращения на обратное. Осуществляется оно путем изменения порядка
чередования фаз обмотки статора. На рис. 5.13.2. показана схема изменения направления
вращения вала двигателя.

Торможение асинхронного двигателя может быть механическим и электрическим.

К механическим относятся торможения муфтами, электромагнитными лентами, колодками и т.д.

Иногда применяют электродинамическое
торможение, когда после отключения двигателя от сети переменного тока в его
обмотки подается постоянный ток. В этом случае постоянное магнитное поле заметно
сокращает выбег ротора.

Чаще используется торможение
«противовыключением». После отключения двигателя от сети его кратковременно
включают на вращение в обратную сторону. Как только оставшаяся частота вращения
ротора n2 станет равной нулю, двигатель отключается от сети.

Схемы торможения противовключением асинхронных двигателей

При управлении моментом при торможении противовключением асинхронного двигателя с короткозамкнутым ротором с контролем скорости применяется узел схемы, приведенный на рисунке 1. В качестве реле противовключения используется реле контроля скорости SR, укрепляемое на двигателе. Реле настраивается на напряжение отпадания, соответствующее скорости, близкой к нулю и равной (0,1 — 0,2) ωуст.

Схема используется для остановки двигателя с торможением противовключением в реверсивной (рис. 1, а) в в нереверсивной (рис. 1, б) схемах. Команда SR используется для отключения контакторов КМ2 или КМ3 и КМ4, отключающих обмотку статора от напряжения сети при скорости двигателя, близкой к нулю. При реверсировании двигателя команды SR не используются.

Рис. 1: а — реверсивная схема; б — нереверсивная схема

Узел управления асинхронным двигателем с фазным ротором в режиме торможения противовключением с одной ступенью, состоящей из R1 и R2, приведен на рисунке 2. Управляющее реле противовключения KV, в качестве которого применяется, например, реле напряжения постоянного тока типа РЭВ301, которое подключено к двум фазам ротора через выпрямитель V. Реле настраивается на напряжение отпадания.

Часто для настройки реле KV используется дополнительный резистор R3. Схема в основном применяется при реверсировании асинхронных двигателей со схемой управления, приведенной на рисунке 2, а, но может использоваться и при остановке в нереверсивной схеме управления, приведенной на рисунке 2, б.

При пуске двигателя реле противовключения КV не включается и ступень противовключения резистора ротора R1 выводится сразу после подачи управляющей команды на пуск.

Схема управления торможением противовключением асинхронных двигателей с фазным ротором

Рис. 2: а — реверсивная схема; б — нереверсивная схема

В режиме противовключения после подачи команды на реверс (рис. 2, а) или остановку (рис. 2, б) скольжение электродвигателя повышается и происходит включение реле KV. Реле KV отключает контакторы КМ4 и КМ5 и тем самым вводит полное сопротивление R1 + R2 ротор двигателя.

В конце процесса торможения при скорости асинхронного двигателя, близкой к нулю и составляющей примерно 10 — 20 % установившейся начальной скорости ωпер = (0,1 — 0,2) ωуст, реле KV отключается, обеспечивая команду на отключение ступени противовключения R1 с помощью контактора КМ4 и на реверсирование электродвигателя в реверсивной схеме или команду на остановку электродвигателя в нереверсивной схеме.

В приведенных схемах в качестве управляющего устройства может применяться командоконтроллер и другие аппараты.

5.18.4 Электромагнитная асинхронная муфта

Электромагнитная асинхронная муфта (рис. 5.18.4.1)
устроена по принципу асинхронного двигателя и служит для соединения двух частей
вала. На ведущей части вала 1 помещается полюсная система 2, представляющая
собой систему явно выраженных полюсов с катушками возбуждения. Постоянный ток
в катушке возбуждения подводится через контактные кольца 4. Ведомая часть муфты
3 исполняется по типу роторной обмотки двигателя.

Принцип работы муфты аналогичен работе асинхронного
двигателя, только вращающийся магнитный поток здесь создается механическим вращением
полюсной системы. Вращающий момент от ведущей части вала к ведомой передается
электромагнитным путем. Разъединение муфты производится отключением тока возбуждения.

Управление электрическим током позволяет осуществлять
дистанционное управление муфтой (плавно сцеплять и расщеплять ее). Поэтому ее
применяют в автоматике и телемеханике.

Рекуперативное торможение

Схема показана ниже:

Приведенная схема может реализовывать две схемы торможения – рекуперативное или динамическое. При использовании схемы инвертора позволяющего проводить рекуперацию энергии, оно будет произведено, но такая схема будет немного дороже чем схема с динамическим замедлением (показана пунктиром). Если электропривод имеет частые пуски и остановы, то применять схему с рекуперативным торможением более целесообразно, чем при длительных или кратковременных режимах работы. При выборе схемы питания необходимо произвести технико – экономические расчеты целесообразности применения какой – то из схем.

5.17. ИСПОЛЬЗОВАНИЕ ТРЕХФАЗНОГО ДВИГАТЕЛЯ В КАЧЕСТВЕ ОДНОФАЗНОГО

Очень часто задают вопрос, нельзя ли обычный трехфазный
двигатель включить в однофазную сеть переменного тока?

Рассуждения в п.5.14., относящиеся к однофазным двигателям,
можно отнести к двигателям с трехфазной обмоткой на статоре. На рис. 5.17.1.
показаны четыре различные схемы подключения двигателей.

Здесь две статорные обмотки включаются в сеть последовательно,
образуя обмот­ку возбуждения. Третья фазная обмотка является пусковой, поэтому
она содержит фазо­сдвигающий элемент.

Второе обязательное условие для двухфазных двигателей
здесь можно выполнить достаточно точно путем правильного подбора конденсатора С.

Первое условие здесь выполнено неточно, т.к. пространственный
сдвиг между обмотками составляет не 90°, а 120°.

Вследствие этого, двигатель теряет примерно 50-60% своей номинальной мощности.

Торможение вводом постоянного тока

Этот вариант используется на двигателях с фазным и короткозамкнутым ротором. Если сравнивать с противоточной системой, стоимость применения источника выпрямленного тока компенсируется меньшим количеством резисторов.

Благодаря электронным регуляторам скорости и стартерам, этот способ торможения асинхронных  электродвигателей видится вполне экономичным.

Принцип останова путём ввода постоянного тока. Для работы этой системы требуется источник постоянного напряжения. Требования к величине напряжения не критичны

Методика предполагает отключение обмоток статора от сети и подачу на обмотки выпрямленного тока. Прохождение выпрямленного тока по обмоткам статора сопровождается образованием фиксированного потока в воздушном зазоре между ротором и статорным кольцом двигателя.

Для достижения значения этого потока, способного обеспечить надлежащее торможение, ток должен быть примерно в 1,3 раза выше номинального тока.

Избыток тепловых потерь, неизбежно вызываемых этим незначительным превышением, обычно компенсируется временной паузой после останова мотора.

Критерии применения метода вводом постоянного тока

Поскольку значение тока зависит от сопротивления обмотки статора, напряжение на источнике выпрямленного тока невысокое. Обычно источником выступает схема выпрямителя или контроллера скорости.

Эти источники выпрямленного тока должны быть адаптированы к переходным скачкам напряжения, происходящим на обмотках в момент отсоединения от переменного источника питания.

Движение ротора здесь следует рассматривать скольжением относительно поля, зафиксированного в пространстве. Поведение двигателя аналогично синхронному генератору с разгрузкой на роторе.

Поэтому важны отличия характеристик, полученных на торможении вводом выпрямленного тока, по сравнению с противоточной схемой:

  1. Меньше энергии рассеивается на резисторах ротора или в теле ротора. Процесс эквивалентен механической энергии, массово выделяемой при движении. Единственная мощность, потребляемая от сети, — возбуждение статора.
  2. Когда нагрузка не является управляемой, двигатель не запускается в противоположном направлении.
  3. Если нагрузка является управляемой, система действует постоянно и удерживает нагрузку на низкой скорости. То есть достигается фактор замедления, а не полного торможения. Характеристика намного стабильнее, чем у системы противотока.

На моторах с фазным ротором характеристики крутящего момента зависят от выбора резисторов.

Вариант тормозных резисторов: 1 — датчик нагрева; 2 — металлический шунт; 3 — высокотемпературный проводник; 4 — проволочный резистивный элемент; 5 — температурный блок; 6 — корпус

На двигателях с короткозамкнутым ротором система позволяет легко регулировать момент торможения электродвигателя, воздействуя на энергетику постоянного тока.

Тем не менее, тормозной момент остаётся низким, если мотор имеет высокие обороты.

5.2. ПРИНЦИП ОБРАЗОВАНИЯ ВРАЩАЮЩЕГОСЯ МАГНИТНОГО ПОЛЯ МАШИНЫ

На статоре трехфазного
двигателя расположены 3 обмотки (фазы), которые смещены в пространстве по отношению
друг к другу на 120 эл. градусов. Токи, подаваемые в фазные обмотки, отодвинуты
друг от друга во времени на 1/3 периода (рис. 5.2.1.).

Используя график изменения
трехфазного тока, проставим на нем несколько отметок времени; tl,
t2, t3,…tn. Наиболее удобными будут отметки,
когда один из графиков пересекает ось времени.

Теперь рассмотрим электромагнитное
состояние обмоток статора в каждые из принятых, моментов времени.

Рассмотрим вначале точку
t1. Ток в фазе А равен нулю, в фазе С он будет положительным — (+)
, а в фазе В — отрицательным (·) (рис. 5.2.2, а).

Поскольку каждая фазная обмотка имеет замкнутую форму, то конец фазной обмотки
В-У будет иметь противоположный знак, т.е. У — (+), а конец Z обмотки C-Z — (·).

Известно, что вокруг проводника
с током всегда образуется магнитное поле. Направление его определяется правилом
правоходового винта («буравчика»).

Проведем силовую магнитную
линию вокруг проводников С и У и, соответственно, В и Z (см. штриховые линии
на рис. 5.2.2 a).

Рассмотрим теперь момент
времени t2. В это время тока в фазе В не будет. В проводнике А фазы
А-Х он будет иметь знак (+), а в проводнике С фазы C-Z он будет иметь знак (·).
Теперь проставим знаки:
в проводнике Х — (·), а в проводнике Z — (+).

Проведем силовые линии
магнитного поля в момент времени t2 (рис. 5.2.2,б). Заметим при этом,
что вектор F  совершил поворот.

Аналогичным образом проведем
анализ электромагнитного состояния в фазных обмотках статора в момент времени
t3,…tn (рис. 5.2.2, б, в, г, д).

Из рисунков 5.2.2 наглядно видно, что магнитное поле в обмотках и его поток Ф
совершают круговое вращение.

Частота вращения магнитного поля статора определяется следующей формулой:

где f — частота тока питающей сети, Гц; p — число пар полюсов.

Если принять f=50 Гц, то
для различных чисел пар полюсов (р=1, 2, 3, 4,  )
n1=3000, 1500, 1000, 750,  об/мин.

5.18.2 Индукционные регуляторы и фазорегуляторы

Индукционные регуляторы напряжения представляют
собой заторможенный асинхронный двигатель с фазовым ротором. Им можно регулировать
напряжение в широких пределах. Статорная и роторная обмотки в регуляторе соединены
электрически, но так, чтобы они могли быть смещены относительно друг друга поворотом
ротора. При подключении индукционного регулятора к сети вращающийся магнитный
поток наводит в обмотках статора и ротора ЭДС E1 и E2.
При совпадении осей в обмотках ЭДС E1 и E2 совпадают по
фазе, а на выходных зажимах регулятора устанавливается максимальное значение
напряжения.

При повороте ротора оси обмоток поворачиваются
на некоторый угол a. На такой же угол смещается и вектор E2.
При этом напряжение на выходе уменьшается. Поворотом ротора на угол 180° мы
устанавливаем на выходе минимальное напряжение.

Фазорегулятор предназначен для изменения фазы вторичного
напряжения относительно первичного. При этом величина вторичного напряжения
остается неизменной.

Фазорегулятор представляет собой асинхронную машину,
заторможенную специальным поворотным устройством. Напряжение подводится к статорной
обмотке, а снимается с роторной. В отличие от индукционного регулятора здесь
обмотки статора и ротора электрически не соединены. Изменение фазы вторичного
напряжения осуществляется поворотом ротора относительно статора.

Применяется в автоматике и измерительной технике.

Режим динамического торможения

Режим динамического торможения синхронного электродвигателя от асинхронного отличается тем, что в синхронном электродвигателе статорная обмотка отключается от сети и подключается к тормозным резисторам, на которых гасится энергия, вырабатываемая электрической машиной при торможении. Схема приведена ниже:

При работе в двигательном режиме выключатель QF замкнут. При переходе электродвигателя в режим динамического торможения выключатель QF размыкается, а QF1 замыкается, при этом напряжение с обмотки возбуждения не снимается. В итоге машина переходит в генераторный режим, а энергия, которая вырабатывается при этом, гасится на резисторах R1, R2, R3, создавая тем самым тормозной момент. При таком режиме работы расход электроэнергии значительно ниже, чем при противовключении. Интенсивность замедления зависит от величины сопротивлений R1, R2, R3. Также на интенсивность влияет и параметры источника постоянного тока возбуждения. Если возбудитель находится на валу машины (собственный возбудитель), то время замедления значительно возрастет, так при уменьшения скорости вращения синхронного электродвигателя будет падать ток возбуждения. Если возбудитель питается от другого источника тока, то момент торможения поддерживается постоянным.

5.7. ВЕКТОРНАЯ ДИАГРАММА АСИНХРОННОГО ДВИГАТЕЛЯ

Используя принципы построения
векторной диаграммы для трансформатора, построим ее для асинхронного двигателя.

Вначале во втором основном уравнении величину r2‘ представим в виде:


,

что математически не противоречит друг другу.

Тогда само уравнение можно переписать:

Используя три основных
уравнения двигателя, построим векторную диаграмму, которая, будет несколько
напоминать диаграмму трансформатора (рис. 5.7.1).

Вторичное напряжение определяется вектором:


,

иначе говоря, асинхронный двигатель в электрическом отношении работает как трансформатор при активной нагрузке.

Мощность, отдаваемая вторичной обмоткой данного трансформатора


,

представляет собой полную механическую мощность, развиваемую двигателем.

Ссылка на основную публикацию