Полярные сияния на марсе

Некоторые особенности ландшафта Марса могли образоваться аналогично земным

Несмотря на редкость явления, на Земле по-прежнему продолжают возникать совершенно новые участки суши. После извержения подводных вулканов появляются небольшие острова. За последние 150 лет история стала свидетелем как минимум трех таких событий. При этом последнее случилось совсем недавно. В 2015 году в результате извержения вулкана в Тихом океане появился остров Хунга Тонга-Хунга Хаапай.

Событие, разумеется, привлекло внимание ученых из NASA. Поначалу ученые опасались, что остров может рассыпаться, но теперь говорят, что Хунга Тонга-Хунга Хаапай может просуществовать по меньшей мере 30 лет

Интерес NASA к острову вызван тем, что он позволяет представить картину того, как вода могла формировать ландшафт древнего Марса. Появившийся Хунга Тонга-Хунга Хаапай изначально был нестабилен и постоянно терял свои части, которые падали обратно в океан. Разрушение острова прекратилось, как только его основа (вулканический пепел) вошла в реакцию с соленой водой и затвердела. По мнению ученых из NASA, аналогичным образом могли появиться некоторые ландшафтные особенности Марса.

Марсианские сутки не многим длиннее земных

Продолжительность суток говорит о том, сколько времени требуется планете для совершения полного оборота вокруг своей оси. На планетах, которым требуется больше времени для совершения полного оборота, дни длятся дольше. Продолжительность дня на каждой планете Солнечной системы своя, поскольку всем требуется свое время для совершения полного оборота.

На Земле сутки длятся 24 часа (если округлить). На Юпитере – 9 часов 55 минут. На Венере — 116 дней и 18 часов. Марсианские сутки длятся 24 часа и 40 минут. Учитывая такое большое разброс продолжительности суток между другими планетами, как так получилось, что продолжительность земных и марсианских суток разделяют всего 40 минут? Чистое совпадение, говорят ученые.

Согласно общепринятой модели формирования планет, они образуются из крупных сгущений в газопылевом диске, оставшегося после формирования звезды. Вследствие столкновения с другими объектами внутри газопылевого диска эти сгустки начинают вращаться. При этом скорость их вращения может варьироваться и изменяться множество раз. В конце концов, когда формирование планеты практически завершено, объект больше ни с чем не сталкивается. У появившейся планеты сохраняется момент вращения, возникший в результате последнего столкновения.

Марс способен поддерживать жизнь

На Марсе жизнь пока не нашли, но ученые твердо уверены в том, что Красная планета способна поддерживать и когда-то поддерживала существование жизни. «Кьюриосити», один из роверов, бороздящих поверхность Марса, обнаружил следы органических молекул в породе кратера Гейла, который около 3,5 миллиарда лет назад являлся озером.

Для жизни необходимо наличие комбинации из четырех органических молекул: белков, нуклеиновых кислот, жиров, а также углеводов. Без этих компонентов организм не сможет существовать как живой. Наличие этих молекул на Марсе будет означать, что там есть жизнь. Но не все так просто. Дело в том, что данные молекулы могут производиться некоторыми видами неживых веществ, что делает такой вывод неокончательным. Поэтому у ученых имеется другой индикатор, который мог бы указывать на наличие жизни на Марсе – метан.

Живые существа производят метан. На самом деле основная часть этого вещества на Земле произведена живыми существами. В атмосфере Марса тоже обнаружен метан. Там он задерживается всего на сто лет, после чего исчезает, а затем вновь появляется. То есть, получается, что на планете имеется некий источник метана, пополняющий его концентрацию в атмосфере. Что это за источник – ученым пока неизвестно, но они продолжают активно дискутировать на эту тему. Одни говорят, что метан является результатом неких химических реакций, происходящих на планете, другие уверены – метан производится микробами. Более того, ученые даже обнаружили выбросы метана, выяснив, что они происходят сезонно. Как оказалось, чаще всего они происходят в летний период и прекращаются в зимний. На Земле такая особенность не наблюдается.

На Марсе есть свои «водопады»

Изучив изображения, полученные с помощью орбитального зонда Mars Reconnaissance Orbiter (MRO), ученые обнаружили наличие геологического «марсианского чуда света», похожего на наши земные водопады. Правда в случае Марса речь идет не об отвесных стоках больших объемов воды, а о потоках расплавленной лавы.

Исследователи выяснили, что лава извергалась в четырех различных точках вдоль 30-километрового кратера Тарсис, расположенного в регионе Марса, представляющего собой огромное вулканическое нагорье к западу от долин Маринера в районе экватора. Судя по фотографиям, как утверждают специалисты, можно сказать, что лава на Марсе была жидкой и по своему поведению была схожа с водой: после того, как лава заполняла кратер, она изливалась на поверхность четырьмя потоками. Потоки лавы не могли перекрыть старые отложения на одном уровне с кратером, о чем говорят различные цветовые оттенки на фото. Наиболее свежие же отложения — тёмного цвета, а старые — светлого.

На Марсе могут расти растения (в теории)

Ученые из NASA уверены – в перспективе на Марсе будет возможно сельское хозяйство. Мы сможем выращивать там овощи и фрукты, деревья и многое другое. В ходе эксперимента, проведенного совместно с Международным центром по картофелю в Перу, ученые из NASA смогли вырастить картофель в специальном боксе, внутри которого имитировались суровые условия климата Марса.

К сожалению, данный эксперимент нельзя считать показательным, поскольку ученые использовали почву, взятую из перуанской пустыни Пампа-де-Ла-Хойя. Несмотря на то, что почва прошла стерилизационную обработку для чистоты эксперимента, в ней по-прежнему могли остаться микробы, которые могли способствовать росту растений. Кроме того, картофель выращивался из частей картошки, а не из семян, а это в свою очередь может оказаться большой проблемой, поскольку таким образом картофель транспортировать на Марс невозможно – радиация повредит его клетки, что сделает ее непригодной для выращивания.

В ходе аналогичного эксперимента студенты Университета Вилланова (штат Пенсильвания, США) вырастили салат, капусту, чеснок и хмель. Картошку вырастить не удалось. Клубни погибли из-за слишком плотной почвы. В ходе своего эксперимента студенты в качестве почвы для посадки использовались вулканический базальт, вместо богатого железом аналога марсианского грунта (реголита). Несмотря на то, что базальт вполне неплохо имитирует среду реголита, это все-таки другое соединение.

Реголит непригоден для посадки, поскольку в нем содержится большое число перхлоратов, крайне токсичных для человеческого организма. Однако, отмечают ученые, не все потеряно. От перхлоратов почву можно избавить путем фильтрации (водой) или заселением в нее бактерий, которые питаются этими соединениями. Использование бактерии выглядит даже более предпочтительным, поскольку они смогут производить кислород в ходе этого процесса.

Другой проблемой является солнечный свет, а точнее его нехватка. Как известно, Красная планета получает лишь половину от того объема света, который получает Земля. Более того, добрая часть этого света блокируется «пылевым фильтром» марсианской атмосферы. Даже если ученые решат эту проблему, придется как-то решать еще и вопрос ультрафиолетового излучения, которое практически в полном объеме бомбардирует Марс с Солнца.

Обсудить статью можно .

По материалам hi-news

Как образуются полярные сияния?

Как известно, полярные сияния на Земле — это красочные проявления света и огней в ночном небе поблизости от полярных регионов планеты, где их чаще всего называют северным и южным сияниями. Тем не менее, аналогичное сияние на Марсе происходит не только в полярной зоне соседней планеты, но и практически повсеместно. Сияния на Марсе происходят в невидимом человеческому глазу ультрафиолетовом спектре, однако их легко обнаружить с помощью ультрафиолетового спектрографа изображений (IUVS) на космическом аппарате MAVEN (Mars Atmosphere and Volatile EvolutioN).

Согласно поставленной задаче от НАСА, основная миссия MAVEN на Красной планете заключается в исследовании запасов воды, а также причин ее массовой потери в далеком прошлом. Известно, что Красная планета далеко не всегда имела ржаво-рыжий цвет своей поверхности, однако, потеряв большую часть своей атмосферы и влаги, Марс превратился в сухой и холодный негостеприимный мир. Поскольку сияния на Марсе косвенно генерируются остатками водорода, полученными из марсианской воды, постоянно улетучивающейся в космос, обнаруженные сияния могут быть использованы при отслеживании современных потерь марсианской жидкости.

Настоящее и прошлое Марса

Как сообщает портал phys.org, ультрафиолетовые сияния Марса также могут рассказать ученым об изменениях климата в этом загадочном мире, постоянно дающем поводы в очередной раз усомниться в своей безжизненности. Так, все полярные сияния на Земле и Марсе так или иначе связаны с солнечной активностью, будь то при взрывах высокоскоростных частиц во время солнечных бурь или же при порывах солнечного ветра, непрерывный поток которого движется в космосе со скоростью около полутора миллиона километров в час.

Например, северное сияние на Земле происходит именно в результате нарушения сильной солнечной активностью целостности магнитосферы Земли, заставляя электроны солнечного ветра врезаться в частицы газа в верхней атмосфере темной стороны Земли, обеспечивая при этом их активное свечение. Аналогичные процессы приводят и к возникновению дискретного и диффузного сияний Марса — двух типов сияний, которые ранее наблюдались лишь на марсианской темной стороне.

Известно, что в течение летнего периода, Красная планета также находится на самом близком расстоянии от Солнца, порождая одновременно огромные пыльные бури, способные полностью закрыть планету от внешних наблюдений. Исследователи склонны считать, что летнее потепление и активность пыли вызывают протонные полярные сияния, которые заставляют водяной пар высоко подниматься в атмосферу. Солнечный экстремальный ультрафиолетовый свет разбивает воду на основные составляющие — кислород и водород, последний из которых весьма слабо связан с гравитацией Марса, легко улетучиваясь в космос и создавая некое подобие газовой оболочки над поверхностью планеты. Относительно большая концентрация водорода в атмосфере Марса активно реагирует на протоны солнечного ветра, создавая при этом более частое и яркое полярное сияние.

На Марсе есть вода

В 2008 году космический аппарат NASA Mars Reconnaissance Orbiter (MRO) обнаружил признаки наличия потоков жидкой воды. Это открытие означало, что вода на Красном плане приобретает жидкую форму в летний сезон и замерзает в зимний. Как уже говорилось выше, марсианское лето гораздо холоднее земного. Однако дорожки, по которым могла течь вода, были обнаружены в месте, где температура не поднимается выше -23 градусов Цельсия. И если наличие водного льда здесь еще можно было бы объяснить, то наличие жидкой воды при минусовой температуре ученые объяснить пока затрудняются.

Согласно одному из предположений, вода здесь не замерзает из-за большого содержания соли (у соленой воды точка замерзания ниже). Согласно другой гипотезе, жидкая вода могла образоваться на поверхности вследствие контакта соли и льда (соль растопила лед). В любом случае более убедительное объяснение увиденному ученые планируют получить после определения источника этой воды. В настоящий момент выдвигаются несколько предположений: результат таяния льда, подземный источник, а также водный пар из атмосферы.

Полярные сияния на планетах Солнечной системы +100

  • 07.12.19 04:17


GreenRediska

#479162

Хабрахабр


Из песочницы

13100

Из песочницы, Научно-популярное, Космонавтика

Наверняка те, кто хоть раз в жизни видел своими глазами северное (или южное) полярное сияние, скажут, что это просто фантастическое зрелище. Чудо природы планетарного масштаба, грандиозное явление, которое человек может наблюдать на Земле невооруженным глазом. Свечение атмосферы на высотах в сотни и на удалении в тысячи километров настолько разноцветно и динамично, что производит впечатление чего-то живого, движущегося, дышащего…
Но только ли наша планета может похвастать этим грандиозным зрелищем? Могут ли, если не коренные жители, то будущие колонисты, к примеру Марса или спутников Юпитера, наблюдать что-либо подобное?
Что вообще нужно, чтобы на какой-либо планете возникли полярные сияния?
По определению, полярные сияния — это свечение (люминесценция) верхних слоёв атмосфер планет, обладающих магнитосферой, вследствие их взаимодействия с заряженными частицами солнечного ветра.
Итак, нам требуется:
1. Солнечный ветер, представляющий из себя поток заряженных частиц — протонов, электронов, ядер гелия и др. — Имеется всегда во всей Солнечной системе.
У планет или их спутников:
2. Атмосфера, с атомами которой будет взаимодействовать солнечный ветер.
3. Магнитное поле, направляющее заряженные частицы в определенную область планеты (не обязательно в полярную, — угол между магнитной осью и осью вращения планеты, может быть значительным.)
Посмотрим, как это работает на Земле.

Электронные полярные сияния,

Сильнейшее рентгеновское полярное сияние, зафиксированное 11 апреля 1997 года орбитальным спутником Polar. На картинке видны рентгеновские лучи (в условных цветах), порожденные в верхней атмосфере и обусловленные потоками электронов высоких энергий.

Марс

Локальные магнитные поля МарсаУльтрафиолетовые данные наложены на снимок Марса на ночной стороне до (слева) и во время (справа) события. Авроральное излучение кажется наиболее ярким на краю снимка планеты вдоль линии светящегося слоя атмосферы.

Система Юпитера

Северное полярное сияние Юпитера. Комбинированный снимок «Хаббла», видимый диапазон и ультрафиолет. Схема магнитосферы Юпитера и воздействия Ио: плазменный тор (красное), нейтральное облако (жёлтое), потоковая трубка (зелёное) и линии магнитного поля (голубые)Анимация, созданная из снимков космического телескопа Хаббл, весна 2005 года. Справа виден след ИоАвроральные или горячие пятна (в ультрафиолете) Ио, Ганимеда и Европы — следы магнитных силовых линий, соединяющих ионосферы спутников с ионосферой Юпитера.
Яркие пятна внутри основных колец, появляющиеся время от времени, как считается, связаны с взаимодействием магнитосферы и солнечного ветра.
Северное и южное полярные сияния Юпитера. Фото планеты и фото полярных сияний, сделанные разными инструментами телескопа «Хаббл» (видимый диапазон и ультрафиолет).Рентгеновские полярные сияния в северном и южном полушарии Юпитера. Данные с орбитальных спутников «XMM-Newton» и «Chandra X-ray»Комбинированное фото телескопов «Хаббл» и «Chandra X-ray»Фото + реконструкция полярного сияния в видимом диапазоне над северным полюсом Юпитера с аппарата «Juno». Орбитальная юпитерианская станция позволила наблюдать темную сторону планеты. 18 декабря 2018 год.Инфракрасное изображение полярного сияния на Южном полюсе Юпитера с телескопа «Subaru».
Взаимодействующие с солнечным ветром газы в верхних слоях атмосферы нагреваются, как и на Земле. Однако нагрев юпитерианской атмосферы происходит в два или три раза глубже, чем на Земле, достигая нижнего уровня стратосферы.
ГанимедКомбинированное фото «Хаббла» в видимом и УФ-диапазонах + визуализация Ганимеда.

Система Сатурна

Северное полярное сияние Сатурна, снятое аппаратом «Кассини» в инфракрасном диапазоне (4 мкм, синим цветом). Лежащие внизу облака — окрашены в условный красный (5 мкм). Прямо под сияниями видно обнаруженное ранее шестиугольное облако.Южный полюс Сатурна и совместная работа телескопа «Хаббл» в УФ-диапазоне и аппарата «Кассини» в видимом, ИК- и радиодиапазонах.
Три изображения Сатурна, полученные с промежутками в два дня.
И Сатурн в чистом ультрафиолете от «Хаббла».

Уран и Нептун

Полярные сияния Урана, пойманные УФ-спектрографом «Хаббла» в 2011, 2012 и 2014 годах.

Вы можете помочь и перевести немного средств на развитие сайта

Марс – единственная (помимо Земли) потенциально обитаемая планета

Планеты нашей Солнечной системы принято разделять на две категории – планеты земного типа, а также газовые гиганты. Планеты земного типа обладают твердой поверхностью. Мы можем на них высадиться. К ним относятся Меркурий, Венера, Земля и Марс (прости, Плутон). Газовые гиганты состоят собственно из газов. На них невозможно высадиться, поскольку у них нет твердой поверхности. К газовым гигантам относятся Юпитер, Сатурн, Уран и Нептун.

Насколько нам известно, среди всех известных планет Солнечной системы только на Земле есть жизнь. Марсу не хватает для этого совсем чуть-чуть. Среды остальных планет нас просто убьют. Например, поверхность Меркурия похожа на гигантскую жаровню, поскольку планета находится очень близко к Солнцу. Несмотря на свое более далекое расположение поверхность Венеры (вторая планета от Солнца) еще горячее. Объясняется это наличием очень плотной атмосферы из окиси углерода, которая действует как тепловая ловушка.

Теоретически Марс способен поддерживать жизнь, хотя эта планета не такая гостеприимная, как может показаться из подзаголовка. Для выживания на Марсе нам потребуется использование специального защитного оборудования и жилища, поскольку на планете присутствует повышенный радиационный фон, а также отсутствует атмосфера для дыхания.

Ученые, рассматривающие планы по потенциальной колонизации Марса, предложили идею установки генератора магнитного поля между Марсом и Солнцем. Наличие магнитного поля могло бы защитить Марс от солнечного ветра (радиации), истощающего атмосферу планеты.

Если решить проблему солнечного ветра, мы сможем поднять на Марсе атмосферное давление, что в свою очередь приведет к росту средней температуры на поверхности планеты и растопит ледяные шапки на полюсах. Выброс CO2 в атмосферу запустит парниковый эффект. На Марсе вновь потекут реки воды, а сама планета превратится в неплохой космический курорт. Мечты, мечты. Начнем с того, что у нас нет технологий, которые позволили бы создать магнитное поле у целой планеты. На этом, пожалуй, пока и закончим.

Ссылка на основную публикацию