Плазменное напыление

Сверхзвуковая газопламенная металлизация

Последовательность действий выглядит следующим образом:

  1. Предварительная подготовка поверхности (очистка, шлифовка, обезжиривание).
  2. Промывка подготовленного изделия.
  3. Если не вся поверхность будет подвержена металлизации, необходимо тщательно укрыть оставшуюся часть детали.
  4. Разработать систему надежного крепления заготовки к каркасу, который будет опускаться в раствор.
  5. Приготовить раствор в ванной требуемых размеров.
  6. После металлизации заготовку просушивают и при необходимости полируют.

Обработка в домашних условиях не всегда дает сразу ожидаемый эффект. Поэтому после просушки следует аккуратно обработать полученный слой. Для автоматизации процесса можно изготовить простую установку.

Особое внимание следует уделить вопросам безопасности при работе с ядовитыми жидкостями и высоким напряжением. Сверхзвуковой электродуговой металлизацией восстанавливают коленчатые валы дизелей с износом до 4 мм на сторону

Себестоимость восстановления составляет 25…40 % от стоимости нового коленчатого вала

Сверхзвуковой электродуговой металлизацией восстанавливают коленчатые валы дизелей с износом до 4 мм на сторону. Себестоимость восстановления составляет 25…40 % от стоимости нового коленчатого вала.

В настоящее время водород рассматривается как наиболее перспективный вид горючего, универсальный теплоноситель и аккумулятор энергии. По сравнению с традиционными углеводородными энергоносителями водород имеет более высокую (приблизительно в 3 раза) удельную теплоту сгорания и не загрязняет окружающую среду при горении.

Фокусированию пламени мешает струя транспортирующего кислорода, «раздувающего» пламя. Профессором Хромовым В. Н. (ОГАУ) и сотрудниками разработана конструкция горелки «ИСКРА-1В», в которой транспортирующим газом является водородно-кислородная смесь, являющаяся одновременно горючим газом и энергоносителем пламени (патент РФ №2211096). В горелке обеспечивается лучший прогрев напыляемых частиц и, соответственно, повышается качество покрытия.

Конструкция горелки «ИСКРА-1В», отличается от горелки «ИСКРА-1», работающей на ацетилене, конструкцией соплового наконечника. Изменено соотношение размеров порошкового канала и выходных отверстий мундштука, что предохраняет горелку от обратного удара по порошковому каналу при использовании водородно-кислородной смеси, а также выравнивает скорость истечения водородно-кислородной смеси и скорость ее горения.

Скорость горения водородно-кислородной смеси в 1,7 раза выше скорости горения ацетилена, соответственно выше и скорость истечения газовой струи, увеличивается скорость полета расплавленных частиц. Продуктами сгорания горючей смеси является водяной пар, что позволяет избежать загрязнения окружающей среды от вредных выбросов.

Отличие в том, что к кислородному ниппелю горелки подводится водородно-кислородная смесь, а к ацетиленовому – углеродосодержащий газ, например пропан-бутан (до 5 % для создания восстановительного пламени).

Электролизно-водный генератор «Москва-20»
Номинальная мощность, кВт 20
Производительность по газовой смеси при
номинальной мощности, не менее, л/ч 6000
Давление газовой смеси, МПа 0,5
Электропитание, В 380, трехфазное
Габаритные размеры (ширина × длина × высота), мм, не более
 блок электролизера 360х1290х830
блок питания  270х520х370
блок водяных затворов  190х440х470
выносной пульт управления  190х235х110
Вес, кг, не более
блок электролизера (сухой) 98
блок питания 19
блок водяных затворов (сухой) 16
выносной пульт управления  3

Оборудование используется при напылении всех классов порошковых материалов плавящихся при температуре до 2800 °С без разложения.

Применение электролизно-водных генераторов в качестве источника водородно-кислородной смеси имеет следующие достоинства:

  1. аппараты взрывобезопасны при хранении и работе. Время от включения холодного, неработающего аппарата до выхода на рабочий режим составляет 1…5 мин, в зависимости от окружающей температуры и требуемого расхода газа;
  2. производительность аппарата автоматически поддерживается равной расходу газа на горелку, поэтому масса взрывающегося вещества (водороднокислородной смеси) в работающем аппарате невелика;
  3. напыление отличается экологической чистотой, т. к. продуктом горения является водяной пар;
  4. затраты на горючие газы при восстановлении деталей в 3…4 раза ниже по сравнению с традиционным газопламенным напылением.

Сущность и назначение напыления металлов

Нанесение защитных покрытий на металл необходимо для многих отраслей промышленности. Цель напыления изделий – повышение базового эксплуатационного ресурса заготовки. Защитный слой обеспечивает надежную защиту от следующих вредных факторов:

  • воздействия агрессивных сред;
  • вибрационных и знакопеременных нагрузок;
  • термического воздействия.

Состав многокомпонентного порошка подбирают исходя из требуемых эксплуатационных качеств.

В процессе напыления поток частиц направляют на поверхность металла. При взаимодействии с поверхностью распыляемые элементы деформируются, что обеспечивает надежный контакт с изделием. Качество адгезии с заготовкой зависит от характера взаимодействия частиц с подложкой, а также процедуры кристаллизации защитного слоя.

Газотермические технологии нанесения защитных покрытий.

Газотермические покрытия применяют при ремонте оборудования и упрочнении рабочих поверхностей новых деталей. Основные технологические процессы, которые сегодня используются в газотермическом напылении – это высокоскоростное напыление, плазменное напыление на воздухе с использованием таких плазмообразующих газов, как аргон, азот, гелий, воздух, детонационное и газопламенное напыление, а также электродуговая металлизация и наплавка.

Газотермическое напыление

Преимущества газотермического напыления

Высокоскоростное (HVOF, HVAF) напыление

Плазменное напыление

Преимущества плазменного напыления

Газопламенное напыление

Преимущества газопламенного напыления

Процесс образования металлизационного покрытия

Преимущества электродуговой металлизации

Технология газопламенного напыления

Технология проволочного газопламенного напыления, которую наиболее широко используют в промышленности, должна отвечать следующим требованиям.

Сжатый воздух, используемый для распыления расплавленной проволоки, должен быть сухим и не содержать масла. Давление сжатого воздуха должно быть не менее 0,4 МПа (4 физических атмосферы).

Перед напылением необходимо тщательно осмотреть поверхность. Если в результате осмотра установлено, что на ней имеются следы влаги, окисная пленка, окалина и другие загрязнения, необходима вторичная обдувка абразивными материалами. Первый слой покрытия напыляют в течение 4 часов после обдувки. Окончательное напыление покрытия до требуемой толщины должно быть проведено не более чем через 8 часов после предварительной обработки.

Зажигать горелку и выводить ее на рабочий режим необходимо вдали от напыляемой поверхности. Расстояние от горелки до поверхности детали обычно составляет 75…250 мм. Выбор величины этого расстояния зависит от напыляемого материала и диаметра проволоки, а также от свойств напыляемого покрытия. При очень малом расстоянии может возникнуть опасность коробления основы под действием термических напряжений. Когда же расстояние слишком большое, температура летящих частиц снижается, что приводит к образованию рыхлого покрытия и уменьшению прочности сцепления с основой, что может вызвать отделение покрытия от основы.

При порошковом напылении керамики расстояние от среза сопла горелки до основы составляет 150…200 мм, а в случае напыления пруткового материала это расстояние около 75 мм.

Наибольшая деформация напыляемых частиц при соударении с поверхностью основы происходит, если горелка установлена относительно нее под углом 90°. Когда невозможно обеспечить этот угол, покрытие получается с несколько худшими характеристиками. Допустимый угол наклона горелки, при котором можно наносить покрытие, составляет не менее 45°.

При напылении режим работы горелки, скорость перемещения и расстояние напыления должны поддерживаться постоянными. Обычно скорость перемещения горелки или основы при напылении на плоские поверхности составляет от 10 до 25 м/мин, а шаг перемещения горелки – 6…12 мм.

В случае перегрева поверхности основы при напылении происходит снижение прочности сцепления покрытия. Как правило, температура поверхности напыляемой детали не должна превышать 260 °С. Для контроля температуры основы можно воспользоваться, например, термопарами, термокарандашами или термокрасками, которые наносят на деталь в непосредственной близости от места напыления. Для предотвращения перегрева при напылении обрабатываемую основу можно охлаждать воздухом.

При температуре напыляемой поверхности, близкой к 0 °С и ниже, проводить напыление не рекомендуется, так как покрытие может отслоиться. Для того чтобы покрытие не растрескалось, необходимо предварительно нагреть основу до температуры 100…120 °С. От способа предварительной обработки основы в значительной степени зависит толщина наносимого покрытия. Нарезка резьбы на напыляемой поверхности позволяет наносить более толстые покрытия по сравнению с подготовкой поверхности обдувкой абразивными материалами.

При механическом перемещении напыляемого изделия или горелки процесс напыления принимает более устойчивый характер и покрытие можно получить более однородным. Для напыления на валы часто используют токарные станки. Обычно в этих случаях горелку устанавливают на суппорте. После напыления на этом же станке, не вынимая детали, можно произвести ее обточку или шлифование. При напылении покрытий на большие партии изделий процесс напыления желательно автоматизировать.

Покрытие, полученное после напыления, по своей структуре является в значительной степени пористым. Пористость его можно в некоторых случаях эффективно использовать. Заполнять поры можно путем нанесения на покрытие слоя краски, пропиткой покрытия специальными составами или проплавлением его, если оно получено из самофлюсующихся сплавов. Для улучшения механических свойств и термостойкости покрытия его можно подвергнуть также термической обработке. Однако наиболее широкое применение находят плотные покрытия.

Высокоскоростное газопламенное напыление (HVOF «High Velocity Oxygen Fuel Spraying»)

Высокоскоростное газопламенное напыление по праву считается наиболее современной из технологий напыления. В странах Европы и Северной Америки высокоскоростное напыление практически вытеснило гальванику и методы вакуумного напыления во многих отраслях. Твердосплавные покрытия, нанесенные методами высокоскоростного напыления, по всем статьям превосходят гальванические покрытия, процесс создания которых признан чрезвычайно канцерогенным.

В начале 80-х годов прошлого века появились установки высокоскоростного напыления, более простые по конструкции и основанные на классической схеме жидкостного реактивного двигателя, со скоростью газового потока более 2000 м/с.

Плотность покрытий достигает при этом 99 %. В качестве наносимого материала используют порошки карбидов, металлокарбидов, сплавов на основе Ni, Cu и др. Для увеличения скорости частиц увеличивают скорость истечения продуктов сгорания путем повышения давления в камере сгорания до 1,5 МПа, а в конструкцию горелки вводят сопло Лаваля. На рис. 3 представлена схема распылителя системы высокоскоростного напыления.

В результате порошкового напыления образуется надежное, долговечное покрытие, обладающее отличными эксплуатационными свойствами. В том числе устойчивостью к коррозии, истиранию, ударам и другим внешним воздействиям. Оно продлевает срок службы изделий на десятки лет. При этом стоимость такого защитного покрытия гораздо ниже, чем аналогичного гальванического.

Рис. 3. Схема высокоскоростного напыления порошка: 1 – канал осевой подачи порошка; 2 – подача кислорода; 3 – подача топлива; 4 – канал радиальной подачи порошка; 5 – ствол горелки; 6 – сопло Лаваля; 7 – струя разогретого порошка; 8 – напыляемая поверхность

Нанесение детонационных покрытий

Метод детонационного нанесения покрытий основан на высокоскоростном ударном взаимодействии нагретых до высоких температур частиц порошка напыленного материала с подложкой (рис. 5).

Рис. 5. Схема детонационной установки с внутренним смесеобразованием: 1 – клапан подачи ацетилена; 2 –клапан подачи азота; 3 – канал подачи порошка; 4 – свеча зажигания; 5 – ствол пушки; 6 – клапан подачи кислорода; 7 – мишень

Детонационная установка с внутренними смесеобразователями представляет собой водоохлаждаемый ствол длиной 1…1,8 м с внутренним диаметром от 10 до 40 мм. В ствол подается смесь кислорода и ацетилена вместе с порцией порошка. Взрываемая газовая смесь воспламеняется при помощи электрического импульса, и детонационная волна перемещается по стволу, ускоряя и нагревая порошок. Частицы порошка ускоряются до скорости 500…1000 м/с и ударяются в деталь, образуя пятно напыленного покрытия. Затем ствол очищается азотом, и процесс повторяется. Процесс напыления осуществляется циклически (4…10 циклов в секунду). Детонационные покрытия обеспечивают повышение эксплуатационных свойств и ресурса работы узлов, машин и механизмов, восстанавливают изношенные детали (до 1 мм на сторону).

Материалы покрытий:

  • металлы и их оксиды, карбиды, бориды, нитриды;
  • твердые сплавы;
  • композитные порошки.

Комплекс детонационного напыления «ГРОМ-3М»

Комплекс «ГРОМ-3М» предназначен для восстановления дорогостоящих и дефицитных деталей машин, механизмов, работающих в условиях интенсивного износа (рис. 6).

Рис. 6. Комплекс детонационного напыления «Гром-3М»: 1 – стойка для установки пушки; 2 – напыляемая деталь (коленвал); 3 – трехствольная пушка с порошковым питателем

В состав оборудования входят:

  • пушка детонационная;
  • защитная звукоизолированная камера;
  • манипулятор для перемещения деталей;
  • стойка управления.

Комплекс «ГРОМ-3М» позволяет:

  • восстанавливать изношенные поверхности коренных и шатунных шеек коленчатых валов двигателей внутреннего сгорания, а также любых тел вращения;
  • наносить износостойкие покрытия с заданными свойствами;
  • существенно повысить эксплуатационный ресурс восстановленных деталей;
  • в 2…3 раза снизить затраты при ремонте оборудования за счет отказа от приобретения новых узлов и деталей машин и механизмов.

Технические характеристики

  • Габаритные размеры напыляемых деталей:
    • длина, мм 1700
    • диаметр, мм 500
  • Масса напыляемых деталей, кг не более 350
  • Вертикальное перемещение пушки, мм 1900
  • Скорость перемещения пушки, м/с 5…50
  • Скорость вращения напыляемой детали, об./мин 1…75
  • Скорострельность пушки, цикл/с 17
  • Количество стволов, шт. 3
  • Толщина наносимого слоя, мм 0,01…3
  • Адгезия, кг/мм2 10…30
  • Твердость наносимых слоев, ед. НRC до 65
  • Рабочие газы:

«топливо» – пропан-бутан

«окислитель» – кислород

«продувка» – воздух

  • Напряжение питания, В 3×380
  • Потребляемая электрическая мощность, кВт не более 1

Просмотров: 766

Проволочное и прутковое напыление

В обоих случаях напыляемый материал в виде проволоки или прутка подается через центральное отверстие горелки и расплавляется в пламени. Струя сжатого воздуха распыляет расплавленный материал на мелкие частицы, которые осаждаются на обрабатываемой поверхности. Подача проволоки производится с постоянной скоростью роликами, приводимыми в движение встроенной в горелку воздушной турбиной, работающей на сжатом воздухе, используемом для напыления, или электродвигателем через редукционный механизм. При этом необходима точная регулировка скорости вращения турбины или электродвигателя.

При использовании воздушной турбины трудно производить точную регулировку скорости подачи проволоки, однако в этом случае горелка более компактна и имеет меньшие габариты. Поэтому воздушные турбины используют в горелках, которые предназначены для ручного напыления. Горелки с электрическим двигателем позволяют более точно регулировать подачу проволоки и поддерживать ее постоянную скорость. Однако такие горелки имеют значительную массу, поэтому их устанавливают в механизированных установках для напыления. Диаметр напыляемой проволоки обычно не превышает 3 мм. При напылении металлов с низкими температурами плавления (алюминий, цинк и т. д.) горелками с повышенной производительностью диаметр проволоки может составлять 5…7 мм.

Для распыления металлических проволок диаметром от 1,5 до 4,0 мм и гибких шнуровых материалов диаметром от 3,0 до 5,0 мм применяется многофункциональная установка газопламенного напыления «Техникорд ТОП-ЖЕТ/2» (рис. 1). С ее помощью можно наносить покрытия для защиты поверхности деталей от различных видов изнашивания, кавитации, коррозионного воздействия различных сред, а также ремонта изношенных деталей с одновременным улучшением эксплуатационных свойств поверхности.

Рис. 1. Установка газопламенного напыления «Техникорд ТОП-ЖЕТ/2»: 1 – стойка; 2 – катушка с проволокой; 3 – блок подготовки воздуха; 4 – пульт управления газами; 5 – горелка «ТОП-ЖЕТ/2»; 6 – шланги

Установка включает пистолет-распылитель «ТОП-ЖЕТ/2», пульт управления рабочими газами, смонтированный на стойке. На стойке предусмотрены крепления для установки двух стандартных катушек с проволокой или шнуровым материалом. Пистолет-распылитель соединяется с пультом управления рабочими газами резинотканевыми рукавами с быстросъемными разъемами для кислорода, горючего газа и сжатого воздуха. Кислород и горючий газ подаются по рукавам на пульт управления от стандартных газовых баллонов, оснащенных редукторами. Сжатый воздух, подаваемый от компрессора, предварительно очищается от следов масла и влаги, после чего поступает по рукаву на вход блока подготовки воздуха и через пульт управления рабочими газами подается в горелку.

Способы напыления, применяемое оборудование

Существует два вида процесса напыления:

  1. Газодинамическое. Обработка осуществляется мельчайшими частицами, размер которых не превышает 150 мкм.
  2. Вакуумное. Процедура протекает в условиях пониженного давления. Образование защитного слоя происходит в процессе конденсации напыляемого материала на базовой поверхности.

Рассмотрим основные способы обработки, а также особенности используемого оборудования для напыления.

Напыление в магнетронных установках

Технология магнетронной вакуумной металлизации основана на действии диодного газового разряда в скрещенных полях. В процессе работы установки в плазме тлеющего заряда образуются ионы газа, которые воздействуют на распыляемое вещество. Основными элементами магнетронной системы являются:

  • анод;
  • катод;
  • магнитный узел.

Преимущества магнетронного метода:

  • высокая производительность;
  • точность химического состава осажденного вещества;
  • равномерность покрытия;
  • отсутствие термического воздействия на обрабатываемую заготовку;
  • возможность использования любых металлов и полупроводниковых материалов.

С помощью установок получают тонкие защитные пленки в среде специального газа. Напыляемым материалом могут выступать металлы, полупроводники или диэлектрики. Скорость образования слоя зависит от силы тока и давления рабочего газа.

Ионно-плазменное напыление

В состав принципиальной схемы оборудования для ионно-плазменного насаждения входят следующие элементы:

  • анод;
  • катод-мишень;
  • термокатод;
  • камера;
  • заготовка.

Алгоритм действия установки:

  1. В камере создается пониженное давление.
  2. На термокатод, который является вспомогательным источником электронов, подается ток.
  3. Вследствие нагрева возникает термоэлектронная эмиссия.
  4. В камеру подают инертный газ. Наибольшей популярностью пользуется аргон.
  5. Между анодом и термокатодом возникает напряжение, которое инициирует образование плазменного тлеющего заряда.
  6. На катод подают мощный заряд.
  7. Положительные ионы воздействуют на распыляемый материал-мишень.
  8. Распыленные атомы осаждаются на заготовке в виде тонкого покрытия.

Ионно-плазменное осаждение используют в качестве декоративных или защитных покрытий, которые характеризуются высокой плотностью и прочностью, а также отсутствием изменений в стереохимическом составе.

Плазменное напыление

  1. Рабочая температура плазмы может достигать 6000 ºC. Это способствует высокой скорости осаждения состава на поверхности. Длительность процесса – десятые доли секунды.
  2. Существует возможность изменения структурного состава поверхности заготовки. Вместе с горячей плазмой в верхние слои изделия могут диффундировать отдельные химические элементы.
  3. Плазменная струя отличается неизменными показателями давления и температуры. Это положительно влияет на качество напыления.
  4. Благодаря малому времени обработки заготовка не подвергается вредным поверхностным факторам, таким как перегрев или окисление.

В качестве источника энергии для образования плазмы используют искровой, импульсный или дуговой разряд.

Лазерное напыление

  • повышения прочности поверхностного слоя;
  • восстановления геометрии изделия;
  • снижения коэффициента трения;
  • защиты от коррозионных процессов.

В отличие от прочих методов металлизации источником тепла является энергия излучения лазера. Высокая точность фокусировки позволяет добиться концентрации энергии точно в зоне работы. Это снижает термическое воздействие на заготовку, что позволяет избежать изменения геометрии изделия и дает возможность осуществить напыление практически любого материала.

Благодаря высокой скорости охлаждения в поверхностном слое металла образуются структуры с высокой твердостью, что повышает эксплуатационные характеристики детали.

Вакуумное напыление

  • испарение;
  • конденсация;
  • адсорбция;
  • кристаллизация.

Производительность процесса зависит от многих факторов: структуры заготовки, типа наносимого материала, скорости потока заряженных частиц и многих других.

Вакуумные установки отличаются принципом действия. Существует непрерывное, полунепрерывное, а также периодическое оборудование.

Ионное осаждение покрытий

Ионное осаждение покрытий осуществляется методами, в которых осаждаемая пленка подвергается интенсивному воздействию ионного компонента корпускулярного потока, обеспечивающего изменения в структуре и свойствах как переходной зоны, так и самого покрытия. Такой результат возможен либо при высокой степени ионизации корпускулярного потока (газообразного или металлического) осаждаемого вещества, либо при высокой энергии ионного компонента корпускулярного потока.

По типу источника генерации металлического компонента потока различают ионно-термические системы распыления и холодные системы. В первых системах перевод переносимого материала из твердого в парообразное состояние происходит в результате термического нагрева, во вторых – распылением с поверхности интегрально холодной мишени (катода).

Эти методы позволяют получать покрытия с высокими служебными характеристиками. В машиностроении они нашли применение для получения износостойких и коррозионно-стойких покрытий как из чистых металлов, так и из сплавов. Недостатком этих методов является низкий процент ионизированных частиц в общем потоке испаряемого материала, что влияет на адгезионные свойства покрытия и условия протекания реакции с реактивным газом.

Ссылка на основную публикацию