Способы пуска электродвигателей насосов для воды

Особенности работы аккумуляторной батареи

От состояния и мощности аккумулятора будет зависеть успешный запуск двигателя. Многие знают, что для АКБ важны такие показатели, как емкость и ток холодной прокрутки. Эти параметры указываются на маркировке, например, 60/450А. Емкость измеряется в Ампер-часах. Аккумулятор имеет малое внутренне сопротивление, поэтому он может кратковременно отдавать большие токи, в несколько раз превышающие его емкость. Указанный ток холодной прокрутки 450А, но при соблюдении определенных условий: +18С° в течение не более 10 секунд.

Однако, подаваемый ток на стартер все равно будет меньше указанных значений, так как не учитывается сопротивление самого стартера и силовых проводов. Этот ток и называется пусковым током.

Аккумулятор отдает пусковой ток на стартер в течение 5-10 секунд. Затем нужно сделать паузу 5-10 секунд, чтобы аккумулятор «набрался сил».

Если после попытки запуска напряжение в бортовой сети резко падает или стартер прокручивается наполовину, то это свидетельствует о глубоком разряде АКБ. Если стартер выдает характерные щелчки, то аккумулятор окончательно сел. Среди других причин может быть поломка стартера.

Принцип действия

Обмотки статора при помощи переменного тока образуют магнитные поля. Они имеют одинаковую амплитуду и частоту, но действуют в разных направлениях, поэтому статический ротор начинает вращаться.

Если в двигателе отсутствует пусковой механизм, ротор останавливается, потому что результирующий крутящий момент равен нулю. В случае, когда ротор начинает вращаться в одном направлении, соответствующий крутящий момент становится выше, когда вал двигателя продолжает вращаться в заданном направлении.

Принцип работы однофазного асинхронного двигателя.

Момент запуска

Сигналом к запуску становится магнитное поле двух обмоток, вращающее подвижную часть двигателя. Оно создается 2 обмотками: главной и пусковой. Дополнительная обмотка меньшего размера является пусковой и подключается к основной схеме включения однофазного двигателя через ёмкостное или индуктивное сопротивление.

Подключение происходит только в момент пуска. При удержании пусковой кнопки короткое время (порядка 2-3 секунд) происходит разгон ротора. В момент отпускания кнопки электрический мотор переходит в режим работы основной фазы.

Пусковая обмотка может работать кратковременно. Более длительное время нахождения под нагрузкой может вызвать перегревание и воспламенение изолирующих элементов, что приведет к выходу из строя.

Надежность повышается за счет встраивания в схему однофазного асинхронного двигателя таких элементов как тепловое реле и центробежный выключатель. Последний отключает пусковую фазу в тот момент, когда ротор разгоняется до номинальной скорости. Отключение происходит автоматически.

Работа реле происходит следующим образом: когда обмотки нагреваются до предельного значения, установленного на реле, механизм прерывает подачу питания на обе фазы, предотвращая отказ из-за перегрузки или по любой другой причине. Это защищает от возгорания.

Варианты подключения

Для того, чтобы мотор заработал необходимо иметь одну 220-вольтовую фазу. Это значит, что подойдет любая стандартная розетка. Благодаря этой простоте двигатели завоевали популярность в быту. Любой прибор, начиная от стиральной машины и до соковыжималки, имеет подобные механизмы в своем составе.

Известны два типа однофазных двигателей в зависимости от способа подключения:

  1. Однофазный асинхронный двигатель с пусковой обмоткой.
  2. Однофазный двигатель с конденсатором.

Схема подключения однофазного асинхронного двигателя с помощью конденсаторов изображена на рисунке.

Схема подключения однофазного асинхронного двигателя с помощью конденсаторов.

Схема содержит пусковую обмотку с конденсатором. После ускорения ротора происходит выключение катушки. Рабочий конденсатор не позволяет размыкаться пусковой цепи, и запускающая обмотка работает через конденсатор в постоянном режиме.

Одновременно с рабочей обмоткой пусковая катушка снабжена током через конденсатор. При использовании в режиме пуска у катушки более высокое активное сопротивление. Фазовый сдвиг при этом имеет достаточную величину, чтобы началось вращение.

Допускается брать пусковую обмотку, с меньшей индуктивностью и большим сопротивлением. Запуск конденсатора осуществляется при подключении его к пусковой обмотке и временному источнику питания.

Чтобы достичь максимального значения пускового момента требуется вращающееся магнитное поле. Для этого нужно добиться положения обмоток под углом 900. При правильно рассчитанной емкости конденсатора обмотки могут быть смещены на 900 градусов. Расчет однофазного асинхронного двигателя зависит от схем подключения, которые приведены ниже.

Схемы включения однофазного асинхронного двигателя.

Различные варианты подключения:

  • временное включение электрического тока на стартовую обмотку через конденсатор;
  • подача на пусковое устройство через резистор, без конденсатора;
  • запуск через конденсатор на пусковую обмотку постоянно, одновременно с работой рабочей обмотки.

Безопасное управление напряжением 24 В

Использование низкого напряжения постоянного тока для управления устройствами плавного пуска имеет определенные преимущества в плане безопасности оператора и соответствия стандартам безопасности. Напряжение постоянного тока чаще преобразуется внутри устройства, однако некоторые производители предлагают внешний (прямой) 24 В блок. Компания Eaton некоторое время была сторонником управления низким напряжением постоянного тока, предложив в 1999 году устройства SSRV из семейства IT Soft Starts с управляющим напряжением 24 В. Такой тип управления исключает опасность для персонала в работе с системами управления. «Кроме того, с использованием управления напряжением 24 В проще достичь соответствия положениям NEC и OSHA, – говорит Партейн. – Если смотреть на проблему глобально, то с помощью напряжения постоянного тока можно избавиться от необходимости преобразовывать множество входных переменных напряжений, используемых во всем мире». В низковольтных пусковых устройствах S752, S801 и S811 от Eaton используется управление напряжением 24 В. Компания ABB начала применять управление от 24 В постоянного тока примерно в это же время. Ее пусковые устройства обычно получают напряжение от внутреннего источника питания AC-DC, далее оно снижается в панели управления. В новых устройствах PST Series внутренний источник питания рассчитан на работу в широком диапазоне входного переменного напряжения 100-250 В, подходящем для мирового рынка. Уровень безопасности оператора сохраняется, поскольку, как объясняет Терри, все выходные контакты находятся под напряжением 24 В. «Это позволяет получить преимущества обоих методов – удобство от использования переменного напряжения 110 В (220 В) и безопасность постоянного напряжения 24 В», – добавляет он к сказанному. Лавлейс из компании Baldor считает, что применение управления 24 В – это требование рынка. Пользователи в США с готовностью принимают управление от 120 В переменного тока, в то время как у европейских пользователей, ограниченных рамками определенных положений, есть спрос на управление от 24 В

«Для того, чтобы ваши средства управления работали на обоих рынках, может потребоваться дополнительное оборудование», – говорит он, отмечая также, что более современные системные интеграторы в США начинают уделять внимание низковольтному управлению. Литцау из Rockwell Automation рассматривает низковольтное управление еще и как возможность связи, которая становится все более популярной в полупроводниковых пускателях

«Низкое напряжение обеспечивает более высокую степень безопасности при случайном контакте с регулятором, – отмечает он. – Оно также позволяет применять тот же источник питания, что и архитектура связи, для общего управления». Компания Rockwell предлагает управление от 24 В постоянного тока и от 120 – 240 В переменного тока для своих пусковых устройств. Такие факторы, как снижающаяся стоимость технологии частотно-регулируемого привода (VFD) и достижение ими «микро» размеров некоторое время назад считались потенциальной угрозой жизнеспособности пусковых устройств электродвигателей. В Schneider Electric по-прежнему считают, что с включением в устройства плавного пуска SSRV управления вращающим моментом они сохраняют свою область применения благодаря такому же, как и у VFD, уменьшению стоимости и размеров. Привлекательными устройства плавного пуска будут оставаться «главным образом в применении к мощным двигателям, где не требуется управление скоростью процесса», – говорит Форсгард. Литцау разделяет точку зрения на пусковые устройства SS по управлению двигателем, продолжительный срок службы которых позволяет рассматривать их в качестве альтернативы запуску с помощью VFD или пускателям с сетевым/полным напряжением. «Такие пусковые устройства являются оптимальным решением, если не требуется управление скоростью двигателя, но пользователи или OEM-производители все же хотят осуществлять управление запуском или остановкой двигателей на своем оборудовании. Кроме того, транзисторные пусковые устройства создают меньше гармоник и имеют более низкую установленную стоимость, чем частотно-регулируемый привод», – заключает Литцау.

Как работает запуск двигателя

После поворота ключа в замке зажигания в положение «запуск» замыкается электрическая цепь. Ток по плюсовой цепи от аккумулятора поступает на обмотку тягового реле стартера. Затем по обмотке возбуждения ток проходит к плюсовой щетке, затем по обмотке якоря на минусовую щетку. Так срабатывает тяговое реле. Подвижный сердечник втягивается и замыкает силовые пятаки. При движении сердечника выдвигается вилка, которая толкает приводной механизм (бендикс).

После замыкания силовых пятаков от аккумулятора подается пусковой ток по плюсовому проводу на статор, щетки и ротор (якорь) стартера. Вокруг обмоток возникает магнитное поле, которое приводит в движение якорь. Таким образом электрическая энергия от аккумулятора преобразуется в механическую энергию.


Работа выключенного и включенного стартера

Как уже было сказано, вилка, во время движения втягивающего реле, выталкивает бендикс к венцу маховика. Так происходит зацепление. Якорь вращается и приводит в движение маховик, который передает это движение коленчатому валу. После запуска двигателя маховик раскручивается до больших оборотов. Чтобы не повредить стартер, срабатывает обгонная муфта бендикса. При определенной частоте бендикс вращается независимо от якоря.

После запуска двигателя и отключения зажигания от положения «запуск» бендикс принимает исходное положение, а двигатель работает самостоятельно.

Пуск с понижением напряжения

Подходит для запуска электродвигателя высокой мощности, но так же оптимален для аналогов средней, если напряжение в рабочей сети не позволяем разогнать мотор с помощью прямого пуска.

Для понижения напряжения существует три способа:

  1. Переключение намоток статора с треугольника (нормальная схема) на звезду (пусковая схема). Запуск начинается со звезды, а при достижении номинальной частоты происходит переключение на треугольник. При этом напряжение, питающее фазы статорных обмоток, падает в 1,73 раз. Это позволяет уменьшиться во столько же раз фазным токам, а линейные сокращаются втрое.
  2. Запуск с добавочным сопротивлением, приводящим к падению вольтажа на статорной обмотке (рисунок а). На момент пуска в электроцепь включают реакторы или резисторы (реактивное и активное сопротивление соответственно).
  3. Пуск с подключением через трансформатор понижающего типа с несколькими автоматически переключаемыми ступенями (рисунок б).

Главное преимущество – возможность разгона двигателя почти при том же напряжении, которое необходимо для нормальной работы. К недостаткам относится лишь падение Мп и Ммакс (максимальный момент). Эти величины прямо пропорционально зависят от напряжения: чем меньше Вольт, тем меньше моменты. Поэтому с нагрузкой мотор не запустится.

Проверка пускового и рабочего конденсаторов

Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку мультиметром.

  • обесточиваем кондиционер
  • разряжаем конденсатор, закоротив еговыводы
  • снимаем одну из клемм (любую)
  • выставляем прибор на измерение ёмкости конденсаторов
  • прислоняем щупы к выводам конденсатора
  • считываем с экрана значение ёмкости

У всех приборов разное обозначение режима измерения конденсаторов, основные типы ниже на картинках. В этом мультиметре режим выбирается переключателем, его необходимо поставить в режим Fcх. Щупы включить в гнёзда с обозначением Сх. Переключение предела измерения ёмкости ручное. Максимальное значение 100 мкФ.

Проверка пускового и рабочего конденсаторов.

Пуск с помощью пускового реостата или пусковых сопротивлений

Рисунок 1. Схема пуска двигателя параллельного возбуждения с помощью пускового реостата (а) и пусковых сопротивлений (б)

(2)

а в начальный момент пуска, при n = 0,

(3)

где Rп – сопротивление пускового реостата, или пусковое сопротивление. Значение Rп подбирается так, чтобы в начальный момент пуска было Iа = (1,4 – 1,7) Iн [в малых машинах до (2,0 – 2,5) Iн].

Рассмотрим подробнее пуск двигателя параллельного возбуждения с помощью реостата (рисунок 1, а).

Рисунок 2. Зависимость Iа, M и n от времени при пуске двигателя

При пуске на холостом ходу Mст = M. Ток Iа = Iа0 в этом случае мал и составляет обычно 3 – 8 % от Iн.

Mдин = M – Mст ,

под воздействием которого происходит увеличение n.

Число ступеней пускового реостата и значения их сопротивлений рассчитываются таким образом, чтобы при надлежащих интервалах времени переключение ступеней максимальные и минимальные значения Iа на всех ступенях получилось одинаковыми.

По условиям нагрева ступени реостата рассчитываются на кратковременную работу под током.

Остановка двигателя производится путем его отключения от сети с помощью рубильника или другого выключателя. Схема рисунка 1 составлена так, чтобы при отключении двигателя цепь обмотки возбуждения не размыкалась, а оставалась замкнутой через якорь. При этом ток в обмотке возбуждения после отключения двигателя уменьшается до нуля не мгновенно, а с достаточно большой постоянной времени. Благодаря этому предотвращается индуктирование в обмотке возбуждения большой э. д. с. самоиндукции, которая может повредить изоляцию этой обмотки.

Применяются также несколько видоизмененные по сравнению с рисунком 1, а схемы пусковых реостатов, без контактной дуги д. Конец цепи возбуждения при этом можно присоединить, например, к контакту 2, и при работе двигателя последовательно с обмоткой возбуждения будут включены последние ступени реостата. Поскольку их сопротивление по сравнению с Rв = rв + Rр.в мало, то это не оказывает большого влияния на работу двигателя.

Автоматизировать переключение пускового реостата неудобно. Поэтому в автоматизированных установках вместо пускового реостата используют пусковые сопротивления (рисунок 1, б), которые поочередно шунтируются контактами К1, К2, К3 автоматически работающих контакторов. Для упрощения схемы и уменьшения количества аппаратов число ступеней принимается минимальным (у двигателей малой мощности обычно 1 – 2 ступени).

Ни в коем случае нельзя допускать разрыва цепи параллельного возбуждения.

Плюс плавная остановка

Все, чье мнение нашло отражение в этой статье, отмечали такую важную характеристику пускателей SSRV, как «плавная остановка» двигателя, особенно в плане снижение шума и смягчения разрушающих гидравлических ударов в такой области применения, как насосы. Терри из компании ABB полагает, что пользователи часто пренебрегают «плавным остановом», несмотря на то, что во многих мягких пускателях это свойство предусматривается. Это, вероятно, связано с «боязнью» из-менять стандартные настройки через сложный интерфейс или просто с незнанием преимуществ плавного останова двигателя. В целях изменения состояния дел в этой области компания ABB включила HMI (интерфейс) с простым текстом в производимые ею пусковые устройства PST Series. С его помощью оператор/ инсталлятор осуществляет установку, выбирая из четко сформулированных групп программирования те, которые наиболее подходят для конкретных целей применения (см. фото).

Рис. Устройства плавного пуска PST Series от ABB включают HMI (интерфейс) с простым текстом для облегчения установки плавной остановки центробежных насосов или компрессоров, дробилок, мешалок и других вариантов групп программирования, встроенных в интерфейс

Лавлейс из компании Baldor соглашается с тем, что существуют «скрытые» возможности плавного останова. Он отмечает: «Многие считают, что устройства мягкого пуска используются только для запуска двигателя. Преимущества, связанные с плавной остановкой нагрузки, не осознаются». Эти премущества включают предотвращение механических напряжений в станке при резкой остановке двигателя. Ограничения, присущие более ранним моделям пускателей SSRV (с возрастанием напряжения), распространялись также и на плавный останов, что было связано с отсутствием достоверного контроля снижения числа оборотов. По мнению Форсгарда (Schneider Electric) это особенно проявлялось при работе двигателей с малой нагрузкой. При современных возможностях управления вращающим моментом пускатели SSRV с линейным торможением могут уменьшать число оборотов таких нагрузок, как центробежные насосы. «С помощью постепенного снижения скорости становится возможным закрытие обратного клапана без гидравлических ударов», – продолжает Форсгард. Устройство плавного пуска непрерывно отслеживает вращающий момент нагрузки двигателя, чтобы определить время начала линейного снижения скорости вращения насосов, как только поступает команда на остановку. Эта система работает даже при нагрузке двигателя в 60-70%. В пусковых устройствах Sirius компанией Siemens предлагается три способа остановки двигателя: вращение по инерции до остановки, плавная остановка и инжекция постоянного тока. В новом пусковом устройстве Sirius 3RW44 объединены торможение на основе инжекции постоянного тока и управление вращающим моментом в замкнутом контуре (когда для постепенного снижения напряжения используется программа и текущая обратная связь). Это позволяет осуществить быстрый останов находящихся в движении нагрузок. Плавная остановка в значительной степени зависит от сферы применения. «Плавная остановка особенно важна в гидравлических насосах, когда необходимо избегать гидравлического удара», – отмечает Коч. В пусковых устройствах Sirius 3RW44 для того, чтобы предотвратить внезапное изменение давления воды при отключении насоса или смягчить механическое напряжение при остановке ленточного транспортера используется управление вращающим моментом в замкнутом контуре. В компании Siemens также отмечают, что оптимальный режим торможения необходим при работе фрезерных станков. Так, например, при отключении электродвигателя мощностью 15 кВт, вращающего головки фрезы, которая обрабатывает отверстия в алюминиевом блоке автомобильного двигателя, ему необходимо долгое время до полной остановки. Это связано с высоким моментом инерции головки фрезы. В результате длительное время уходит на замену инструментов или наладку станка, с чем трудно смириться. «Управление вращающим моментом в замкнутом контуре и динамичное торможение постоянным током используются в пусковых устройствах 3RW44 от Siemens для сокращения времени простоя механизмов», – добавляет к сказанному Коч.

Соединение ротора с реостатом во время включения

Метод подходит для включения в работы моторов с фазным ротором. Если роторная цепь включает в себя реостат, то активное сопротивление повышается. При этом точка К на рисунке а ниже перемещается ближе к О и обозначается К`. Это не приводит к уменьшению Ммакс, зато обеспечивает повышение Мпуск. Вместе с этим критическое скольжение увеличивается, и зависимость момента от s смещается к зоне больших скольжений. Число же оборотов смещается в зону меньших вращательных частот (рисунки б и в).

Обычно реостат, используемый для пуска мотора, имеет от 3 до 6 ступеней (смотрите рисунок а ниже). Пусковое сопротивление плавно уменьшается, что обеспечивается большой Мпуск. Изначально мотор приводится в ход по четвертой характеристике, проиллюстрированной на рисунке б. Она соответствует сопротивлению запускающего реостата и обеспечивает максимальную пусковую мощность.

Вращающий момент (Мвр) уменьшается с ростом оборотов. При некотором минимальном значении необходимо отключить часть реостата, чтобы Мвр возрос снова до максимального (смотрите третью характеристику). Но обороты растут, поэтому Мвр снова уменьшается. Тогда отключается еще одна часть реостата, и начинается работа по второй характеристике. Когда реостат двигателя с фазным ротором отключают вовсе, пусковой процесс завершается. Мотор продолжает работу по характеристике 1.

Запуск в ход таким методом характеризуется изменением Мвр от максимального до минимального значения. Сопротивление в данном случае уменьшается ступенчато по ломаной кривой линии (выделена жирным на графике). Выключение частей реостата осуществляется автоматически или вручную.

Преимущество запуска электродвигателя с фазным ротором с использованием реостата заключается в возможности включать его при Мпуск, близком к Ммакс. Пусковые токи при этом минимальны. Изменение силы тока проиллюстрировано на рисунке в.

Недостатков хватает. Во-первых, это сложность включения. Во-вторых, это необходимость использования совсем не дешевых моторов с фазным ротором. Характер работы хуже, чем у аналогов с короткозамкнутым ротором при мощности одинакового значения – это третий минус. Это объясняет, почему электродвигатели с фазным ротором используют преимущественно в случае возникновения сложностей с запуском других двигателей.

Особенности трёхфазного двигателя

Асинхронные электродвигатели с тремя обмотками на статоре преобладают в различных отраслях сельского хозяйства. Их применяют для привода устройств вентиляции, уборки навоза, приготовления кормов, подачи воды. Популярность таких моторов обусловлена рядом преимуществ:

  • простота строения;
  • надёжность в работе;
  • при подключении в нормальном режиме не используются дорогие и дефицитные устройства;
  • количество технических обслуживаний невелико.

Подключить трехфазный двигатель на 220 можно пытаться, зная различия схем соединения обмоток. Количество фаз, на которое рассчитан двигатель, можно определить по числу зажимов в его клеммной коробке: у трёхфазного в ней будет 6 выводов, а у однофазного два или четыре. Обмотки мотора с тремя фазами соединяются по установленной схеме, называемой «звездой» или «треугольником». Каждая из них имеет свои преимущества и недостатки. При соединении в звезду концы обмоток соединены. В клеммной коробке эта схема соединения будет отображена использованием двух перемычек между зажимами с обозначениями «С6», «С4», «С5».

Если же обмотки двигателя соединяются в треугольник, то к каждому концу присоединяется начало. В клеммной коробке будут использованы три перемычки, которые будут соединять зажимы «С1» и «С6», «С2» и «С4», «С3» и «С5». Трехфазные двигатели рассчитаны на рабочее напряжение в 380 В. Но не всегда в быту имеется такое напряжение. Поэтому возникает проблема: как осуществить подключение электродвигателя через конденсатор к бытовой сети?

Наиболее приемлемый и общедоступный способ — применение фазосдвигающего конденсатора. В таком режиме может быть достигнута 50–60%-ная мощность от номинальной. Отметим, что не все асинхронные двигатели одинаково хорошо будут работать при включении в однофазную сеть. Наиболее приспособлены к данным условиям двигатели, имеющие короткозамкнутый ротор, выполненный в виде двойной клетки.

Оптимальная работа электродвигателя достигается лишь в случае, если емкость конденсатора будет изменяться по мере увеличения скорости вращения. Практически очень сложно осуществить это требование. В связи с этим принято двухступенчатое управление двигателем. Пуск осуществляется с помощью двух конденсаторов (пускового — Сп и рабочего — Ср). Затем, при наборе нужной скорости вращения, пусковой нужно отключить. Основная функция его состоит в увеличении пускового момента.

Расчет конденсатора для электродвигателя можно произвести таким образом. Расчетная формула имеет вид: Ср = К*(Iн/U). Здесь приняты следующие обозначения:

  • сила тока (номинальная) — Iн (А);
  • напряжение (номинальное) — U (В);

К — безразмерный коэффициент.

Значение К определяется тем, как включен двигатель. К = 2800, когда двигатель включен по схеме «звезда». Если же он включен по схеме «треугольник», то значение К = 4800.

Конденсаторы для запуска электродвигателя рекомендуется выбрать из бумажных, в частности:

  • бумажных, герметичных, в металлическом корпусе, маркировка КБГ-МН
  • бумажных, термостойких, условное обозначение БГТ;
  • металлобумажных, частотных, МБГЧ.

В случае необходимости поменять направление вращения двигателя достаточно поменять местами провода, подключенные к зажимам конденсатора. Запуск электродвигателя с помощью конденсатора лучше осуществлять по схеме «треугольник». В этом случае можно добиться максимальной выходной мощности (до 70 %). В качестве примера рассмотрим двигатель АО2. Его номинальная мощность 2,2 кВт, частота вращения — 1420 об/мин. Для его запуска в режиме холостого хода (или при наличии нагрузки) потребуются 2 конденсатора: первый емкостью 230 мкФ (рабочий) и второй емкостью 150 мкФ (пусковой).

Пусковые конденсаторы большой емкости.

ПУСК ПО СХЕМЕ ЗВЕЗДА-ТРЕУГОЛЬНИК

Другим способом запуска, использующимся на трехфазных двигателях, является перекоммутация обмоток: в момент пуска обмотки соединяются звездой, по мере разгона ротора обмотки переводятся в нормальное включение треугольником.

Такой метод пуска фактически является частным случаем способа пуска асинхронного электродвигателя на пониженном напряжении, так как напряжение на обмотках при этом снижаетсяпримерно в 1,73 раза.

Подобный способ пуска может быть легко реализован с помощью набора контакторов с ручным управлением или с приводом от реле времени, поэтому достаточно дешев и распространен. Основные недостатки этого способа:

  1. При отказе одного из контакторов произойдет нарушение коммутации, в результате чего либо станет невозможным пуск, либо значительно снизится мощность двигателя.
  2. Снижение напряжения и тока является фиксированным.
  3. Крутящий момент двигателя при включении обмоток звездой уменьшается, поэтому запуск желательно также производить без нагрузки.

Особенности запуска двигателя в зимних условиях

В зимнее время бывает трудно запустить двигатель. Масло густеет, а значит провернуть его труднее. Также часто подводит аккумулятор.

При минусовой температуре внутреннее сопротивление аккумулятора повышается, батарея садится быстрее, также неохотно отдает нужный пусковой ток. Для успешного пуска двигателя зимой АКБ должна быть полностью заряжена и не должна быть замерзшей. Дополнительно нужно следить за контактами на клеммах.

Вот несколько советов, которые помогут запустить двигатель зимой:

  1. Перед включением стартера на холодную включите дальний свет на несколько секунд. Это запустит химические процессы в батарее, так сказать, «разбудит» аккумулятор.
  2. Не крутите стартер больше 10 секунд. Так батарея быстро садится, особенно на морозе.
  3. Выжмите полностью педаль сцепления, чтобы стартеру не нужно было крутить дополнительные шестерни в вязком трансмиссионном масле.
  4. Иногда могут помочь специальные аэрозоли или «стартерные жидкости», которые впрыскивают в воздухозаборник. При исправном состоянии мотор заведется.

Тысячи водителей ежедневно заводят свои моторы и едут по делам. Начало движения возможно благодаря слаженной работе системы запуска двигателя. Зная ее устройство, можно не только запускать двигатель в самых разных условиях, но и подобрать нужные компоненты в соответствии с требованиями именно к вашему автомобилю.

Замена и подбор пускового/рабочего конденсатора

Если имеется оригинальный конденсатор, то понятно, что просто-напросто необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс “+” и минус “-” и их можно подключить как угодно. Категорически нельзя применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе). Как следствие применения – термическое разрушение. Для этих целей производители специально выпускают неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.

Если нужного номинала нет, то его можно получить параллельным соединением конденсаторов. Общая ёмкость будет равна сумме двух конденсаторов:

Собщ12+…Сп

То есть, если соединить два конденсатора по 35 мкФ, получим общую ёмкость 70 мкФ, напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.

Типы механизмов, участвующих в самозапуске

По классу ответственности все электродвигатели СН можно разделить на три группы.

  • К первой группе относят неответственные электродвигатели, отключение которых не приведет к останову основного оборудования (котлов, генераторов, турбин). Их отключение во время процесса самозапуска должно осуществляться первой ступенью ЗМН (защиты минимального напряжения). К таким механизмам можно отнести ЭД мельниц, перекачивающих или багерных насосов, насосов топливоподачи. Время отключения данных механизмов должно быть самым минимальным.
  • Ко второй группе относятся агрегаты (электродвигатель плюс насос), отключение которых вызывает снижение параметров производительности основного оборудования, но не приводит к аварийному отключению этого оборудования. К таким агрегатам можно отнести дутьевые вентиляторы котлов, конденсатные насосы. Отключение этой группы двигателей должно предусматриваться второй ступенью действия ЗМН.
  • К третьей, и самой ответственной группе относятся механизмы, отключение которых приведет к повреждению котлов, турбин, генераторов. Они не отключаются действием ЗМН, или в случае 2-х скоростных электродвигателей переводятся на первую скорость.

Однако, эта классификация условная. Точный состав оборудования определяется на предприятии и согласовывается главным инженером.

В процессе самозапуска участвуют ответственные механизмы, отключение которых может привести к нарушению работы основного оборудования ТЭЦ или нарушению технологического процесса на предприятии, что в свою очередь может привести к недоотпуску электроэнергии, выходу из строя основного и вспомогательного оборудования.

Бывают случаи, когда самозапуск отдельных механизмов недопустим по условиям техники безопасности, например самозапуск электродвигателей компрессорной установки, работающей с взрывоопасными веществами.

Перед выбором механизмов, которые будут принимать участие в самозапуске, необходимо учитывать, что в некоторых случаях во время перерыва питания, мощность источника питания становится меньше. В таких условиях нецелесообразно повышать суммарную мощность самозапускающихся механизмов. Если же мощность источника питания позволяет, то можно самозапускать все механизмы, для которых этот режим необходим.

Также следует следить за загрузкой агрегатов собственных нужд. Выключатели механизмов, принимающих участие в самозапуске должны находиться во включенном состоянии. Двигатели до 1 кВ, подключенные через магнитные пускатели, контакторы в общем случае не участвуют в самозапуске. Однако если они являются ответственными, то для поддержания на них напряжения при перерывах питания применяют устройства АПВ, УЗОПы (устройство защиты от отключения пускателя), бесперебойники.

Последние статьи

Самое популярное

Ссылка на основную публикацию