На марсе впервые обнаружено озеро с жидкой водой

История изучения планеты Марс

Земляне давно следят за красным соседом, потому что планету Марс можно отыскать без использования инструментов. Первые записи сделаны еще в Древнем Египте в 1534 г. до н. э. Они уже тогда были знакомы с эффектом ретроградности. Правда для них Марс был причудливой звездой, чье движение отличалось от остальных.

Еще до появления неовавилонской империи (539 г. до н. э.) делались регулярные записи планетарных позиций. Люди отмечали перемены в движении, уровнях яркости и даже пытались предсказать, куда они направятся.

В 4 веке до н.э. Аристотель заметил, что Марс спрятался за земным спутником в период окклюзии, а это говорило о том, что планета расположена дальше Луны.

Геоцентрическая концепция Птолемея, отображенная в 1568 году Бартоломеу Вельо

Птолемей решил создать модель всей Вселенной, чтобы разобраться в планетарном движении. Он предположил, что внутри планет есть сферы, которые и гарантируют ретроградность. Известно, что о планете знали и древние китайцы еще в 4-м веке до н. э. Диаметр оценили индийские исследователи в 5-м веке до н. э.

Модель Птолемея (геоцентрическая система) создавала много проблем, но она оставалась главной до 16-го века, когда пришел Коперник со своей схемой, где в центре располагалось Солнце (гелиоцентрическая система). Его идеи подкрепили наблюдения Галилео Галилея в новый телескоп. Все это помогло вычислить суточный параллакс Марса и удаленность к нему.

В 1672 году первые замеры сделал Джованни Кассини, но его оборудование было слабым. В 17-м веке параллаксом пользуется Тихо Браге, после чего его корректирует Иоганн Кеплер. Первую карту Марса представил Христиан Гюйгенс.

Марсианская карта Скиапарелли демонстрирует каналы (1877)

В 19 веке удалось повысить разрешение приборов и рассмотреть особенности марсианской поверхности. Благодаря этому Джованни Скиапарелли создал первую детализированную карту Красной планеты в 1877 году. На ней отобразились также каналы – длинные прямые линии. Позже поняли, что это всего лишь оптическая иллюзия.

Карта вдохновила Персиваля Лоуэлла на создание обсерватории с двумя мощнейшими телескопами (30 и 45 см). Он написал много статей и книг на тему Марса. Каналы и сезонные перемены (сокращение полярных шапок) натолкнули на мысли о марсианах. Причем даже в 1960-х гг. продолжали писать исследования на эту тему.

Второй этап: марсоход и станция на Марсе

Старт второго этапа «ЭкзоМарса» первоначально планировался на 2018 год, однако затем запуск отложили на два года. Именно данный этап считается основным в проекте и призван помочь найти ответ на вопрос, есть ли жизнь на Марсе.

В рамках второй миссии планируется на перелетном модуле, разработанном ESA, доставить на Марс российскую посадочную платформу и европейский марсоход. Перелетный модуль обеспечивает перелет по маршруту Земля – Марс и вход десантного модуля в атмосферу планеты со скоростью примерно 5800 м/с. Десантный модуль осуществляет торможение в атмосфере и спуск на поверхность Марса посадочного модуля в составе посадочной платформы и марсохода.

Инфографика: Роскосмос

Защитит российский десантный модуль при вхождении в марсианскую атмосферу специальный экран из «космического» композита – легкого и прочного материала, который называется стеклосотопласт. Такой материал выдерживает сильную вибрацию, экстремальные температуры и при этом мало весит. Производят защитный экран на предприятии Ростеха – ОНПП «Технология». «Защитный экран имеет достаточно сложную конструкцию, это своего рода многослойный пирог, который чередуется слоями углепластика и сотового заполнителя, и в дальнейшем он еще покрывается теплозащитой», – рассказывает Анатолий Свиридов, директор НПК «Композит» ОНПП «Технология».

Фото: АО «НПО Лавочкина»  

На предприятии заявляют, что работы по проекту «ЭкзоМарс-2020» идут по плану. Разработаны крупногабаритные конструкции из полимерных композиционных материалов для десантного модуля и посадочной платформы. Всего программой предусмотрено создание четырех комплектов – трех для испытаний и «летный» экземпляр.

Кроме того, уже изготовлены 62 панели терморегулирования и каркасы солнечных батарей, в том числе 12 каркасов и шесть панелей терморегулирования, которые необходимы для функционирования посадочной платформы на поверхности Марса после съезда марсохода.

Далее марсоход и посадочная платформа будут работать автономно, осуществляя передачу телеметрической и научной информации на Землю через орбитальный модуль TGO, который уже на околомарсианской орбите.

Шестиколесный европейский ровер массой около 350 кг рассчитан на работу на Марсе в течение семи земных месяцев. Он может проходить до 100 м в сутки и должен проехать за это время несколько километров. Этот марсоход впервые будет искать молекулярно-биологические признаки в подповерхностном слое Красной планеты.

После съезда марсохода российская посадочная платформа массой 828 кг начнет работать как долгоживущая автономная научная станция. Планируется, что она проработает на Марсе около года. На ее борту будет установлен комплекс научной аппаратуры для изучения состава и свойств поверхности планеты. Всего будут установлены 13 научных приборов, в том числе два европейских – LARA (радиоэксперимент для исследований внутреннего строения Марса) и HABIT (эксперимент по поиску потенциально обитаемых зон, жидкой воды, исследований УФ-излучения и температуры).

Озеро подо льдом

Радарные эхо-сигналы выявили наличие жидкой воды под южной полярной шапкой Марса. Это стало важным поворотным моментом в исследованиях Красной планеты как потенциально обитаемого мира.
Вода обнаружена прибором MARSIS, находящемся на борту космического аппарата Европейского космического агентства «Марс Экспресс». Она находится на глубине 1,5 километра под слоем льда, и представляет собой озеро диаметром 20 километров.

Глубину озера невозможно определить с помощью радара, который получает эхо-сигналы из области между скалами и дном ледяной шапки. Это означает, что количество воды в обнаруженном озере может быть достаточно большим, как в озере Восток (Антарктида), или быть просто слоем грязи толщиной в метр.

Чтобы вода оставалась жидкой подо льдом при марсианмских низких значениях температуры и давления, она должна представлять собой насыщенный солевой раствор перхлората, который снижает температуру ее замерзания. Перхлорат, впервые обнаруженный на Красной планете в 2008 году посадочным устройством NASA «Phoenix», широко распространен на Марсе.
Однако такой характер подземных вод вызывает вопросы у астробиологов, когда вопрос заходит о пригодности Марса для жизни. Планетарные ученые ищут жидкую воду на Красной планете по той причине, что жизнь, которую мы знаем, не может выжить без воды. Ведь именно она является универсальным растворителем для всей земной биохимии.

Предыдущие утверждения о наличии жидкой воды на Марсе, которая якобы вызывает появление темных полос в оврагах, называемых рекуррентными наклонными линиями, оказались следами так называемых «сухих лавин».
Новое открытие говорит о том, что на Марсе всегда была жидкая вода, но мы искали ее не там.

1971—1980

«Марс-3» — первая посадка на Марсе

«Пионер-10» — первый облёт Юпитера

«Пионер-11» — первый облёт Сатурна

«Маринер-10» — первый облёт Меркурия

«Вояджер-2» — первый облёт Урана и Нептуна

1971

  • Аполлон-14 — 31 января 1971 — пилотируемая посадка на Луне
  • Салют-1 — 17 апреля 1971 — первая пилотируемая орбитальная станция
  • Маринер-8 — 8 мая 1971 — попытка запустить спутник Марса (неуспешный запуск)
  • Космос-419 — 10 мая 1971 — попытка запустить спутник Марса (не смог покинуть околоземную орбиту)
  • Маринер-9 — 30 мая 1971 — первый искусственный спутник Марса
  • Марс-2 — 19 мая 1971 — искусственный спутник Марса и первая попытка мягкой посадки спускаемого аппарата (неудачная); первый спускаемый аппарат, достигший поверхности Марса
  • Марс-3 — 28 мая 1971 — искусственный спутник Марса; первая мягкая посадка спускаемого аппарата на Марс, первая автоматическая марсианская станция (неудачная, передача данных со станции прекратилась вскоре после посадки)
  • Аполлон-15 — 26 июля 1971 — пилотируемая посадка на Луне; первое применение лунного автомобиля для транспортировки людей
  • Луна-18 — 2 сентября 1971 — попытка доставки на Землю образцов лунного грунта (разбился на Луне)
  • Луна-19 — 28 сентября 1971 — искусственный спутник Луны

1972

  • Луна-20 — 14 февраля 1972 — доставка на Землю образцов лунного грунта
  • Венера-8 — 27 марта 1972 — доставка спускаемого аппарата на поверхность Венеры
  • Космос-482 — 31 марта 1972 — попытка доставить спускаемый аппарат на поверхность Венеры (не смог покинуть околоземную орбиту)
  • Аполлон-16 — 16 апреля 1972 — пилотируемая посадка на Луне
  • Союз Л-3 — 23 ноября 1972 — попытка запустить спутник Луны (неуспешный запуск)
  • Аполлон-17 — 7 декабря 1972 — крайняя пилотируемая посадка на Луне

1973

  • Луна-21/Луноход-2 — 8 января 1973 — планетоход на Луне
  • Скайлэб — 14 мая 1973 — первая американская пилотируемая орбитальная станция
  • Эксплорер-49 (RAE-B) — 10 июня 1973 — искусственный спутник Луны; радиоастрономические исследования
  • Марс-4 — 21 июля 1973 — облёт Марса (неудачная, планировалось запустить спутник Марса)
  • Марс-5 — 25 июля 1973 — искусственный спутник Марса
  • Марс-6 — 5 августа 1973 — облёт Марса и попытка посадки спускаемого аппарата (неудачная, в непосредственной близости к поверхности Марса потеряна связь), первые прямые измерения состава атмосферы, давления и температуры во время снижения спускаемого аппарата на парашюте
  • Марс-7 — 9 августа 1973 — облёт Марса и попытка посадки спускаемого аппарата (неудачная, пролетел мимо Марса)
  • Маринер-10 — 4 ноября 1973 — облёт Венеры и первый облёт Меркурия
  • Пионер-10 — 4 декабря 1973 — первый пролёт вблизи Юпитера

1974

  • Луна-22 — 2 июня 1974 — искусственный спутник Луны
  • Луна-23 — 28 октября 1974 — попытка доставки на Землю образцов лунного грунта (сорвалась из-за повреждений при посадке на Луне)
  • Гелиос-A — 10 декабря 1974 — наблюдения Солнца

1975

  • Венера-9 — 8 июня 1975 — первый искусственный спутник Венеры и спуск посадочного модуля; первые снимки с поверхности Венеры
  • Венера-10 — 14 июня 1975 — искусственный спутник Венеры и спуск посадочного модуля
  • Викинг-1 — 20 августа 1975 — искусственный спутник Марса и первая работающая автоматическая марсианская станция, первые снимки, переданные с поверхности Марса, первые непосредственные исследования атмосферы и грунта, первые эксперименты по поиску жизни на Марсе
  • Викинг-2 — 9 сентября 1975 — искусственный спутник Марса и автоматическая марсианская станция
  • Луна-1975A — 16 октября 1975 — попытка доставки на Землю образцов лунного грунта? (неуспешный запуск)

1976

  • Гелиос-B — 15 января 1976 — аппарат, достигший рекордного сближения с Солнцем (0,29 а. е.)
  • Луна-24 — 9 августа 1976 — доставка на Землю образцов лунного грунта

1977

  • Вояджер-2 — 20 августа 1977 — облёт Юпитера, Сатурна;
  • Вояджер-1 — 5 сентября 1977 — облёт Юпитера, Сатурна; самый быстрый рукотворный объект; первый покинувший Солнечную систему и наиболее удалённый искусственный объект — расстояние свыше 135 а. е. (2016)

1978

  • Пионер-Венера-1 — 20 мая 1978 — искусственный спутник Венеры
  • Пионер-Венера-2 — 8 августа 1978 — доставка спускаемых аппаратов в атмосферу Венеры
  • ISEE-3 — 12 августа 1978 — исследования солнечного ветра; позже получил другое название: International Cometary Explorer, и выполнил облёт кометы Джакобини — Циннера и кометы Галлея — первый облёт комет
  • Венера-11 — 9 сентября 1978 — облёт Венеры и посадка спускаемого аппарата
  • Венера-12 — 14 сентября 1978 — облёт Венеры и посадка спускаемого аппарата

1979

Пионер-11 — 1 сентября 1979 — первый пролёт вблизи Сатурна

Марсианские хроники: история проекта

«ЭкзоМарс» – проект Европейского космического агентства (ESA) и Роскосмоса по исследованию Марса, его поверхности, атмосферы и климата с орбиты и на поверхности планеты.

С начала 2000-х годов «ЭкзоМарс» разрабатывался как совместный проект ESA и NASA. Предполагалось, что американцы предоставят для запуска двух миссий две ракеты Atlas, а также будут участвовать в разработке марсохода. Однако в 2013 году NASA прекратило свое участие в проекте из-за сокращений бюджета. Место NASA занял Роскосмос. В рамках проекта российской стороной будет разработан десантный модуль с посадочной платформой, а европейской стороной – перелетный модуль и марсоход.


Графика: АО «НПО Лавочкина»  

Считается, что основной научной миссией проекта «ЭкзоМарс» является поиск признаков жизни на Марсе в прошлом и в настоящее время. Но не только эту загадку Красной планеты предстоит разгадать «ЭкзоМарсу». Целью проекта также является исследование водной/геохимической среды как на поверхности, так и в недрах планеты. Как известно, вода на Марсе – больше не миф. Впервые о ее наличии заявлено около двадцати лет назад. За все это время воду на Марсе изучили с поверхности и картографировали. А в июле прошлого года был назван первый постоянный водоем: радаром MARSIS обнаружено озеро на Марсе на глубине 1,5 км подо льдом Южной полярной шапки.

Сегодня появилась загадка не менее важная – марсианский метан. Впервые ученые сообщили о метане на Марсе в 2003 году. Обнаружен был этот газ в ничтожно малой концентрации, а общий объем выброса соответствовал 42 тыс. тонн газа. Для сравнения, это примерно треть среднего танкера-газовоза.

В 2012 году американский марсоход Curiosity провел первые исследования и установил, что метана на Марсе нет. Но примерно через год Curiosity снова зафиксировал наличие метана в кратере Гейла. Так что исследование метана, а также других газовых примесей и их источников в атмосфере Красной планеты также является одной из ключевых миссий «ЭкзоМарса».

Первый этап программы «ЭкзоМарс» начался в 2016 году именно с целью разгадки метановой головоломки. Тогда с космодрома Байконур была запущена станция «ЭкзоМарс-2016». Она состояла из научного орбитального аппарата Trace Gas Orbiter (TGO) и демонстрационного спускаемого модуля Schiaparelli. Аппарат Schiaparelli должен был отработать технологию входа в атмосферу, спуска и посадки на поверхность планеты перед запуском второго этапа миссии, но не сумел успешно совершить мягкую посадку и разбился.

TGO в апреле 2018 года начал выполнение своей научной программы, успешно передает снимки Красной планеты и сейчас ждет своей основной миссии – начала функционирования в качестве станции-ретранслятора для марсохода и автоматической научной станции в рамках второго этапа «ЭкзоМарса».

Пункт и время прибытия: Марс, 19 марта 2021 года

В первые месяцы 2019 года начнется окончательная сборка автоматической межпланетной станции «ЭкзоМарс-2020». Запуск состоится в период с 25 июля по 13 августа 2020 года с космодрома Байконур на ракете «Протон-М». Прибытие на Марс произойдет 19 марта 2021 года, заявил глава госкорпорации Роскосмос Дмитрий Рогозин в сентябре прошлого года.

С 2014 года обсуждаются предложения по месту посадки. Изначально было четыре района-кандидата: равнина Оксия, долина Маврта, гряда Арама и равнина Гипанис. Наконец в ноябре 2018 года Международная рабочая группа по выбору места посадки (Landing Site Selection Working Group, или LSSWG) рекомендовала равнину Оксия для посадки аппаратов миссии «ЭкзоМарс-2020».

Равнина Оксия (Oxia Planum). Фото: NASA/JPL/University of Arizona

Равнина Оксия расположена вблизи экватора в северном полушарии Марса около границы высокогорных регионов и низменностей. По имеющимся данным, здесь не очень много крупных ударных кратеров, но достаточно много сухих русел. Таким образом, должны быть заметны следы действия воды в геологическом прошлом.

Район посадки – эллипс 120х19 км внутри неглубокого кратера. Здесь на поверхность выходят породы, обогащенные железом и магнием. Над ними лежит слой темного вещества, возможно, вулканического происхождения. То есть ландшафт достаточно разнообразный, и марсоход сможет исследовать различные образования вблизи места посадки. Кроме того, соблюдены все требования к безопасности посадки. Внутри эллипса посадки нет существенных возвышенностей, и район достаточно низкий и ровный.

Рекомендация группы будет направлена для рассмотрения в Роскосмос и Европейское космическое агентство. Окончательное решение о выборе места будет сделано не позже второй половины этого года.

Проблеск надежды найти жизнь на Марсе.

Орбитальный аппарат «Марс-экспресс» Европейского космического агентства обнаружил при помощи радара Marsis, на южном полюсе Красной планеты под слоями льда и пыли озеро, которое расположено на глубине около 1,5 километра.

Доказательства показывают, что около 4,3 миллиарда лет назад Марс был водным миром, подобным Земле, с огромным, мелким океаном, покрывающим половину планеты | Фото: cbc.ca / GSFC / NASA

Диаметр водоема может доходить до 20 километров. Если эти данные подтвердятся, ученые сделают еще один шаг к ответу на вопрос о том, есть ли жизнь на Марсе, сообщает Science.

Исследования ученых финансировались Итальянским космическим агентством и НАСА. Согласно данным исследования, способом совершить прорыв в поисках жидкой воды на Марсе стало радиоэхозондирование.

Ранее исследователи предполагали, что по поверхности Марса может иногда ненадолго разливаться вода тающих ледников (учитывая низкое давление, она должна очень быстро испаряться), однако впервые появились основания полагать, что на Красной планете существует и постоянный жидкий водный резервуар.

Как пишет BBC, марсоход НАСА «Кьюриосити» обнаружил немногим ранее на поверхности планеты лишь высохшие озера, доказав, что в прошлом вода на Марсе была.

Однако с тех пор температура на планете значительно понизилась из-за очень разреженной атмосферы — и большая часть воды превратилась в лед.

Озеро скрыто под толстым слоем льда | Фото: bbc.com / NASA / JPL / Malin Space Science Systems

Радар не смог измерить толщину водяного слоя, однако ученые полагают, что она никак не меньше метра.

По информации издания, ученые проводили исследования в регионе у южного полюса с 29 мая 2012-го до 27 декабря 2015 года низкочастотным радаром Marsis, задачей которого является поиск жидкой воды и водяного льда на поверхности Марса с помощью излучения электромагнитных волн и изучения отраженного сигнала.

Непрерывная светлая линия на фото чуть ниже отображает верхний слой осадочных отложений на южном полюсе планеты. Он представляет собой тестообразную смесь, состоящую из пыли и замороженной воды. Однако под ним ученые обнаружили что-то необычное.

«Марс-экспресс» изучает поверхность Красной планеты, а сверху — результаты работы радара | Фото: bbc.com / ESA / INAF

Значит ли это, что на Марсе возможна жизнь? Определенно ответить на этот вопрос нельзя. Пока нельзя.

«Ищи воду» — именно так звучит основной принцип астробиологии — науки, изучающей возможность существования жизни за пределами Земли.

Такие образом, новое открытие позволяет с большой долей вероятности предположить наличие воды, но больше ничего не подтверждает.

Температура воды и ее химический состав также могут представлять проблему для возможных марсианских организмов.

Чтобы вода оставалась в жидком состоянии в таком холоде (по расчетам ученых, ледниковый слой начинает таять на глубине, где температура составляет от -10 до -30 градусов), в ней должно быть растворено очень много солей.

Хотя само существование водного резервуара будоражит воображение тех, кого интересует возможность существования на Марсе жизни — пусть даже в прошлом, — характеристики озера еще нужно подтвердить дальнейшими исследованиями.

Ученые не исключают, что в водоеме могут даже сегодня присутствовать микроорганизмы. Они могут использовать для выживания соль и чувствовать себя вполне комфортно даже при отрицательной температуре.

Ученые уже заявляли об обнаружении бактериальной жизни в глубинах антарктического озера Восток, но бурение на Марсе — куда более амбициозный проект.

Также исследователи считают, что на Марсе может быть целая сеть подобных водоемов, так как пока при помощи инструментов орбитального зонда тщательно обследована лишь небольшая площадь поверхности Красной планеты.

Атмосфера и температура планеты Марс

Красная планета располагает тонким атмосферным слоем, который представлен углекислым газом (96%), аргоном (1.93%), азотом (1.89%) и примесями кислорода с водой. В ней много пыли, размер которой достигает 1.5 микрометра. Давление – 0.4-0.87 кПа.

Большое расстояние от Солнца к планете и тонкая атмосфера привели к тому, что температура Марса низкая. Она скачет между -46°C до -143°C зимой и может прогреваться до 35°C летом на полюсах и в полдень на экваториальной линии.

Тонкая марсианская атмосфера и пыльная красная поверхность, отображенные аппаратом Викинг-1 в 1976 году

Марс отличается активностью пылевых бурь, которые способны имитировать мини-торнадо. Они образуются благодаря солнечному нагреву, где более теплые воздушные потоки поднимаются и формируют бури, простирающиеся на тысячи километров.

При анализе в атмосфере также нашли следы метана с концентрацией 30 частичек на миллион. Значит, он освобождался из конкретных территорий.

Исследования показывают, что планета способна создавать в год до 270 тонн метана. Он достигает атмосферного слоя и сохраняется 0.6-4 лет до полного разрушения. Даже небольшое наличие говорит о том, что на планете скрывается газовый источник. Нижний рисунок указывает концентрацию метана на Марсе.

Распределение метана в атмосфере Марса

Среди предположений намекали на вулканическую активность, падение комет или наличие микроорганизмов под поверхностью. Метан может создаваться и в небиологическом процессе – серпентинизация. В нем присутствует вода, углекислый газ и минеральный оливин.

В 2012 году провели несколько вычислений по метану при помощи ровера Curiosity. Если первый анализ показал определенное количество метана в атмосфере, то второй показал 0. А вот в 2014 году ровер натолкнулся на 10-кратный всплеск, что говорит о локализированном выбросе.

Также спутники зафиксировали наличие аммиака, но его срок разложения намного короче. Возможный источник – вулканическая активность.

Значит ли это, что на Марсе возможна жизнь?

Определённо ответить на этот вопрос нельзя. Пока нельзя.

«Мы давно знаем, что поверхность Марса непригодна для жизни — в том виде, в каком мы ее знаем. Поэтому в поисках жизни мы переключились на верхние слои грунта, — объясняет профессор Открытого университета Маниш Патель. — Там можно найти достаточную защиту от вредного излучения, а давление и температура поднимаются до более приемлемого уровня. Но главное — именно в таких условиях может существовать в жидком состоянии вода, составляющая основу жизни».

«Ищи воду» — именно так звучит основной принцип астробиологии — науки, изучающей возможность существования жизни за пределами Земли.

Такие образом, новое открытие позволяет с большой долей вероятности предположить наличие воды, но больше ничего не подтверждает.

«Мы не приблизились к обнаружению жизни как таковой, — говорит Патель, — но это открытие указывает нам, где именно ее искать на Марсе. Это как карта сокровищ — только в данном случае крестов на ней может оказаться немало».

Image caption

Астробиологи изучают экстремальные природные условия, в том числе солёные озёра Земли

Температура воды и ее химический состав также могут представлять проблему для возможных марсианских организмов.

Чтобы вода оставалась в жидком состоянии в таком холоде (по расчетам ученых, ледниковый слой начинает таять на глубине, где температура составляет от -10 до -30 градусов), в ней должно быть растворено очень много солей.

«Вполне вероятно, что эта вода представляет собой экстремально холодный соляной раствор, что для жизни, мягко говоря, не самые идеальные условия», — объясняет астробиолог Сент-Эндрюсского университета.

Состав и поверхность планеты Марс

С показателем плотности в 3.93 г/см3 Марс уступает Земли и имеет лишь 15% нашего объема. Мы уже упоминали, что красный цвет образуется из-за присутствия оксида железа (ржавчина). Но из-за присутствия других минералов он бывает коричневым, золотым, зеленым и т.д. Изучите строение Марса на нижнем рисунке.

Внутреннее строение Марса

Марс относится к планетам земного типа, а значит обладает высоким уровнем минералов, вмещающих кислород, кремний и металлы. Грунт слабощелочный и располагает магнием, калием, натрием и хлором.

В таких условиях поверхность не способна похвастаться водой. Но тонкий слой марсианской атмосферы позволил сохранить лед в полярных областях. Да и можно заметить, что эти шапки охватывают приличную территорию. Существует еще гипотеза о наличии подземной воды на средних широтах.

В структуре Марса присутствует плотное металлическое ядро с силикатной мантией. Оно представлено сульфидом железа и вдвое богаче на легкие элементы, чем земное. Кора простирается на 50-125 км.

Ядро охватывает 1700-1850 км и представлено железом, никелем и 16-17% серы. Небольшие размер и масса приводят к тому, что гравитация достигает лишь до 37.6% земной. Объект на поверхности будет падать с ускорением в 3.711 м/с2.

Стоит отметить, что марсианский пейзаж похож на пустыню. Поверхность пыльная и сухая. Есть горные хребты, равнины и крупнейшие в системе песчаные дюны. Также Марс может похвастаться наибольшей горой – Олимп, и самой глубокой пропастью – Долина Маринер.

На снимках можно заметить множество кратерных формирований, которые сохранились из-за медлительности эрозии. Эллада Планитиа – крупнейший кратер на планете, охватывающий в ширину 2300 км, а вглубь – 9 км.

Планета способна похвастаться оврагами и каналами, по которым ранее могла протекать вода. Некоторые тянутся на 2000 км в длину и на 100 км в ширину.

Спутники Марса

Рядом с Марсом вращаются две его луны: Фобос и Деймос. В 1877 году их нашел Асаф Холл, давший наименования в честь персонажей из греческой мифологии. Это сыновья бога войны Ареса: Фобос – страх, а Деймос – ужас. Марсианские спутники продемонстрированы на фото.

Фобос и Деймос, запечатленные MRO. Это крошечные нерегулярные спутники, которые могли притянуться планетой из пояса астероидов

Диаметр Фобоса – 22 км, а отдаленность – 9234.42 – 9517.58 км. На орбитальный проход ему необходимо 7 часов и постепенно это время сокращается. Исследователи считают, что через 10-50 млн. лет спутник врежится в Марс или же будет разрушен гравитацией планеты и образует кольцевую структуру.

Деймос в диаметре имеет 12 км и вращается на дистанции в 23455.5 – 23470.9 км. На орбитальный маршрут уходит 1.26 дней. Марс также может располагать дополнительными лунами с шириной в 50-100 м, а между двумя крупными способно сформироваться пылевое кольцо.

Есть мнение, что ранее спутники Марса были обычными астероидами, которые поддались планетарной гравитации. Но у них наблюдаются круговые орбиты, что необычно для пойманных тел. Они также могли сформироваться из материала, вырванного от планеты в начале создания. Но тогда их состав должен была напоминать планетарный. Также мог произойти сильный удар, повторяя сценарий с нашей Луной.

Хроники исследований планеты

Хроники исследований планеты начались после того, как в 1877 г. итальянский астроном Скиапарелли обнаружил на ее поверхности разветвленную сеть из прямых линий, которые он назвал каналами. Некоторое время спустя астроном Трувело обнаружил, что видимые пятна на планете меняют свой цвет в зависимости от времени года. Это навело его на мысль о существовании на Марсе растительности.

Однако первые научные попытки доказать существование жизни на планете потерпели неудачу. Было установлено, что содержание кислорода в марсианской атмосфере крайне мало, она настолько разрежена, что исключает существование воды в жидком виде.

Следующий этап в изучении Марса связан с появлением космических кораблей и автоматических межпланетных станций. Советские исследования включали в себя программы «Марс» и «Фобос», в рамках которых производились запуски аппаратов нескольких поколений, в т. ч. со спускаемыми модулями. Первая мягкая посадка на поверхность Марса и попытка передачи изображения поверхности была осуществлена 2 декабря 1971 г. в ходе миссии станции «Марс-3».

Практически одновременно американцы продвигали свои программы исследования Марса — «Маринер» и «Викинг». В 1971 г. «Маринер-9» стал первым искусственным спутником, который произвел картографирование планеты. Орбитальные станции «Викинг-1» и «Викинг-2» доставили на поверхность спускаемые аппараты. С их помощью были сделаны первые результативные исследования с передачей фотографий и взятием проб грунта.

Следующий спускаемый аппарат НАСА (Национального управления по аэронавтике и исследованию космического пространства) Mars Pathfinder работал в 1996-1997 гг. Несколько лет назад существенный прогресс в изучении Красной планеты был достигнут с помощью марсоходов «Спирит» (2004-2010 гг.) и «Оппортьюнити» (2004-2018 гг.) в рамках программы Mars Exploration Rover.

Сейчас на орбитах искусственных спутников находится сразу несколько автоматических межпланетных станций:

  • индийская Mangalyaan;
  • американские «Марс Одиссей», «Марсианский разведывательный спутник» и MAVEN;
  • «Марс Экспресс» и «Трейс Гас Орбитер», принадлежащие Европейскому космическому агентству.

На поверхности планеты работает «Кьюриосити» — марсоход третьего поколения, в перечень задач которого включено обнаружение следов биологической активности.

Где вода сейчас на Марсе?

Жидкая вода должна течь с крутых и теплых склонов на марсианской поверхности. Первый нашли в 2011 году, где подтвердили намеки на соленую жидкость. Фото Марса показывали темные полосы, появляющиеся при смене сезонов. Спектральный анализ говорил, что сформированы соленой жидкой водой. Ниже указана карта Марса с распределением воды.

Карта распределения воды на поверхности Марса

Огромные водные запасы закованы в ледяные осколки и расположены на планетарных полюсах. Эти шапки сокращаются, потому что вода переходит сразу из ледяной формы в газовую, но зимой она трансформируется обратно. Шапки простираются на 3 км и могут полностью покрыть поверхность на 5.6 м.

Замороженная вода Марса также скрывается под поверхностью между экваториальной линией и северным полюсом. Но можно искать и в других территориях. Марс-Экспресс сумел сделать снимки ледяных пластин, погруженных на дно кратеров, а значит вода способна накапливаться в определенных условиях.

Северный марсианский участок со свежим кратером, чей диаметр составляет 6 м. Внутри виден яркий материал (синий)

Водные следы обнаружили еще в 2000 году. Это были овраги, обладающие водным происхождением.

Ссылка на основную публикацию