Устройство дросселя принцип работы и его назначение

Область применения

Дроссель предназначен для того, чтобы сделать нашу жизнь светлее. Конкретно в люминесцентных лампах он ограничивает ток через колбу, до нужной величины, избегая его чрезмерное увеличение через лампу.

Люминесцентный светильник в основном состоит из дросселя, стартера, люминесцентной лампы. В двух словах описание работы люминесцентного светильника происходит так:

Из сети ток через дроссель проходит на одну из нитей накала люминесцентной лампы, далее попадает на стартерное устройство, далее на вторую нить накала и уходит в сеть. В стартерном устройстве пластина из биметалла нагревается тлеющим разрядом газа, выпрямляется под действием тепла и замыкает цепь. В этот момент начинают работать нити накала, на концах лампочки, разогревая пары ртути в колбе люминесцентной лампы. Через короткий промежуток времени, пластина в стартере остывает и возвращается в исходное положение. Во время разрыва цепи происходит резкий всплеск напряжения в дросселе, происходит пробой газа в колбе люминесцентной лампы, и возникает тлеющий разряд, лампочка начинает светить, работающая лампа шунтирует стартер, выключая его из цепи более низким сопротивлением.

В электронных схемах современных экономических люминесцентных ламп тоже есть рассматриваемый в статье элемент, но из-за более высоких частот он имеет миниатюрные размеры. А принцип работы и назначение остались те же.

Также дроссель обязательный элемент в схемах ламп ДРЛ, натриевых ламп ДНАТ, металлогалогеновых лампочек CDM.

В импульсных блоках питания в схемах преобразователях назначение дросселя — блокировать резкие всплески от трансформатора, пропуская сглаженное напряжение. Грубо говоря в этом случае он играет роль фильтра.

В электрических сетях они также устанавливаются, но называются реакторами. Назначение дугогасительного реактора — предотвращать появление самостоятельной дуги во время однофазного короткого замыкания на землю, также как и прочих реакторов, которые так или иначе регулируют или же ограничивают величину тока через них, специально или в случае нештатной ситуации.

С помощью дросселя можно улучшить дешевый или самодельный сварочный аппарат, установив его во вторичную цепь. Сварочный трансформатор собранный с дросселем будет варить не хуже фирменных аппаратов, дуга станет ровной и не будет рваться, шов будет равномерно залит.

Поджог дуги станет происходить намного легче и просадка сетевого напряжения будет меньше влиять на появление и горение дуги. Даже неспециалист сможет быстро достичь хороших результатов в сварке, делая всевозможные поделки у себя дома.

Вот мы и рассмотрели устройство дросселя, принцип работы и назначение. Надеемся, что теперь вы полностью разобрались, для чего нужен данный элемент схемы!

Механическая или электрическая заслонка: что лучше?

Мы с Вами выяснили, что это дроссельная заслонка является тем сам клапаном, который заставляет мотор крутиться быстрее или медленнее, регулируя подачу кислорода к его цилиндрам.

Теперь давайте рассмотрим разновидности этого устройства и их конструктив. Различают такие типы заслонок:

  • с механическим приводом;
  • с электрическим приводом.

Механическая система является классикой и встречается не только на старых автомобилях, но и на вполне современных, но только в бюджетном сегменте.

Её суть заключается в том, что связь между педалью газа и заслонкой осуществляется простым металлическим тросом. Логика работы устройства элементарна – нажали на газ, дроссель открылся и пустил воздух к цилиндрам.

Помимо непосредственно самой поворачивающейся заслонки и тросика, идущего к ней, в состав узла входит датчик положения и регулятор холостого хода.

Назначение первого понятно – датчик отслеживает, насколько сильно открылась заслонка, и передаёт эту информацию, к примеру, в блок управления мотора.

Что же касается регулятора, то он нужен для того, чтобы на холостом ходу двигатель получал необходимую для минимальных оборотов порцию кислорода. Представляет он собой отдельный небольшой клапан с электроприводом.

Что такое дроссельная заслонка с электрическим приводом?

Она гораздо более современная и технологичная. Главное отличие от механической системы заключается в отсутствии непосредственной связи с педалью, всем управляет электроника.

В этом случае отдельные датчики следят за тем, насколько сильно мы нажимаем на газ и уже компьютер принимает решение, как сильно отклонить заслонку при помощи электропривода.

Кстати, в этой разновидности нет необходимости устанавливать отдельный клапан для регулировки оборотов на холостом ходу – воздух в любом случае проходит через основную дроссельную заслонку.

К слову, преимуществ электрической системы перед механической масса. Так как всем процессом заправляет электроника, удаётся достичь лучшей экономичности двигателя и меньшего уровня выбросов вредных веществ.

Короче говоря, механические варианты хоть и просты в конструкции, но уже являются устаревшими не только физически, но и морально.

Надеюсь, теперь у Вас не возникнет вопроса: «А что такое дроссельная заслонка и зачем она нужна?» Подписывайтесь, ведь публикации статей об устройстве автомобилей продолжаются.

Как проверить дроссель мультиметром

Что такое дроссель и для чего его применяют разобрались, теперь ещё стоит научиться определять его работоспособность. Если мультиметр может измерять индуктивность, всё несложно. Просто проводим измерение. Если параметры дросселя нам неизвестны, выставляем самый большой предел измерений. Обычно это несколько сотен Генри. На шакале обозначаются русскими Гн или латинской буквой H.

Установив переключатель мультиметра в нужное положение, щупами касаемся выводов катушки. На экране высвечивается какое-то число. Если цифры малы, переводим переключатель в одно из следующих положений, ориентируясь по предыдущим показателям.

Функция измерения индуктивности есть далеко не во всех мультиметрах

Например, если высветилось 10 мГн, выставляем предел измерения ближайший больший. После этого повторно проводим измерения. В этом случае на экране высветится индуктивность измеряемого дросселя. Имея паспортные данные, можно сравнить реальные показатели с заявленными. Они не должны сильно отличаться. Если разница велика, надо дроссель менять.

Если мультиметр простой, функции измерения индуктивности в нём нет, но есть режим измерения сопротивлений, также можно проверить его работоспособность. Но в данном случае мы будем измерять не индуктивность, а сопротивление. Измерив сопротивление обмотки мы просто сможем понять, работает дроссель или он в обрыве.

Так можно проверить исправность дросселя для ламп дневного света

Для прозвонки дросселя тестером переводим переключатель мультиметра в положение измерения сопротивлений. Выставляем предел измерений, лучше выставить нижний,чтобы видеть сопротивление обмотки. Далее щупами прикасаемся к концам обмотки. Должно высветиться какое-то сопротивление. Оно не должно быть бесконечно большим (обрыв) и не должно быть нулевым (короткое). В обоих случаях дроссель нерабочий, все остальные значения — признак работоспособности.

Чтобы убедиться в отсутствии короткого замыкания на витках дросселя, можно перевести мультиметр в режим прозвонки и прикоснуться щупами к выводам. Если звенит — короткое есть, где-то есть пробой, а это значит, что нужен другой дроссель.

Дроссель – это катушка индуктивности, которая обладает большим сопротивлением по отношению к переменному току. В схеме постоянного тока дроссель оказывает гораздо меньшее сопротивление. Название электрического компонента имеет немецкое происхождение – Drossel, что означает сглаживание, торможение.

Примеры использования в схеме

Есть масса схем, где используются делители напряжения. Поэтому мы приведем сразу несколько примеров.

Допустим мы проектируем усилительный каскад, на транзисторе, который работает в классе А. Исходя из его принципа действия, нам нужно задать на базе транзистора такое напряжение смещения (U1), чтобы его рабочая точка была на линейном отрезке ВАХ, при этом чтобы ток через транзистор не был чрезмерным. Допустим нам нужно обеспечить ток базы в 0,1 мА при U1 в 0,6 Вольта.

Тогда нам нужно рассчитать сопротивления в плечах делителя, а это обратный расчет относительно того, что мы привели выше. В первую очередь находят ток через делитель. Чтобы ток нагрузки не сильно влиял на напряжения на его плечах, зададим ток через делитель на порядок выше тока нагрузки в нашем случае 1 мА. Uпитания пусть будет 12 Вольт.

Тогда общее сопротивление делителя равняется:

Rд=Uпитания/I=12/0.001=12000 Ом

R2/R=U2/U

Или:

R2/(R1+R2)=U2/Uпитания

10/20=3/6

20*3/6=60/6/10

R2=(R1+R2)*U1/Uпитания=12000*0.6/12=600

R1=12000-600=11400

Проверим расчеты:

U2=U*R2/(R1+R2)=12*600/12000=7200/12000=0,6 Вольт.

Соответственное верхнее плече погасит

U2=U*R2/(R1+R2)=12*11400/12000=136800/12000=11,4 Вольт.

Но это еще не весь расчет. Для полного расчета делителя нужно определить и мощность резисторов, чтобы они не сгорели. При токе 1 мА на R1 выделится мощность:

P1=11,4*0,001=0,0114 Ватт

А на R2:

P2=0,6*0,001=0,000006 Ватт

Здесь она ничтожно мала, но представьте какой мощности нужны были бы резисторы, если бы ток делителя составлял 100 мА или 1 А?

Для первого случая:

P1=11,4*0,1=1,14 Ватт

P2=0,6*0,1=0,06 Ватт

Для второго случая:

P1=11,4*1=11,4 Ватт

P2=0,6*1=0,6 Ватт

Что уже немалые для электроники цифры, в том числе и для использования в усилителях. Это не эффективно, поэтому в настоящее время используют импульсные схемы, хотя и линейные продолжают использоваться либо в любительских конструкциях, либо в специфичном оборудовании с особыми требованиями.

Второй пример – это делитель для формирования Uопорного для регулируемого стабилитрона TL431. Они применяются в большинстве недорогих блоков питания и зарядных устройств для мобильных телефонов. Схема подключения и расчетные формулы вы видите ниже. С помощью двух резисторов здесь создается точка с Uопорным в 2.5 вольта.

Еще один пример — это подключение всевозможных датчиков к микроконтроллерам. Рассмотрим несколько схем подключения датчиков к аналоговому входу популярного микроконтроллера AVR, на примере семейства плат Arduino.

В измерительных приборах есть разные пределы измерения. Такая функция реализуется также с помощью группы резисторов.

Но на этом область применения делителей напряжения не заканчивается. Именно таким образом гасятся лишние вольты при ограничении тока через светодиод, также распределяется напряжение на лампочках в гирлянде, и также вы можете запитать маломощную нагрузку.

Как работает дроссель.

В цепях переменного тока, для ограничения тока нагрузки, очень часто применяют дроссели — индуктивные сопротивления. Перед обычными резисторами здесь у дросселей имеется серьезные преимущества — значительная экономия электроэнергии и отсутствие сильного нагрева.

Каково устройство дросселя, на чем основан принцип его работы? Устроен дроссель очень просто — это катушка из электрического провода, намотанная на сердечнике из ферромагнитного материала. Приставка ферро, говорит о присутствии железа в его составе (феррум — латинское название железа), в том или ином количестве.

Без дросселя, схема будет работать как обычно — цепь замыкается, лампа загорается. Но если добавить дроссель, подключив его последовательно нагрузке(лампочке), картина несколько изменится. Присмотревшись, можно заметить, что во первых, лампа загорается не сразу, а с некоторой задержкой, во вторых — при размыкании цепи возникает хорошо заметная искра, прежде не наблюдавшаяся. Так происходит потому что, в момент включения ток в цепи возрастает не сразу — этому препятствует дроссель, некоторое время поглощая электроэнергию и запасая ее в виде электромагнитного поля. Эту способность и называют — индуктивностью.

Чем больше величина индуктивности, тем большее количество энергии может запасти дроссель. Еденица величины индуктивности — 1 Генри В момент разрыва цепи запасеная энергия освобождается, причем напряжение при этом может превысить Э.Д.С. используемого источника в десятки раз, а ток направлен в противоположную сторону. Отсюда заметное искрение в месте разрыва. Это явление называется — Э.Д.С. самоиндукции.

Если установить источник переменного тока вместо постоянного, использовав например, понижающий трансформатор, можно обнаружить что та же лампочка, подключенная через дроссель — не горит вовсе. Дроссель оказывает переменному току гораздо большое сопротивление, нежели постояному. Это происходит из за того, что ток в полупериоде, отстает от напряжения.

Графически это выглядит таким образом.

Получается, что действующее напряжение на нагрузке падает во много раз(и ток соответственно), но энергия при этом не теряется — возвращается за счет самоиндукции обратно в цепь. Сопротивление оказываемое индуктивностью переменному току называется — реактивным. Его значение зависит от величины индуктивности и частоты переменного тока. Величина индуктивности в свою очередь, находится в зависимости от количества витков катушки и свойства материала сердечника, называемого — магнитной проницаемостью, а так же его формы.

Магнитная проницаемость — число, показывающее во сколько раз индуктивность катушки больше с сердечником из данного материала, нежели без него(в идеале — в вакууме.) Т. е — магнитная проницаемость вакуума принята за еденицу.

В радиочастотных катушках малой индуктивности, для точной подстройки применяются сердечники стержеобразной формы. Материалами для них могут являться ферриты с относительно небольшой магнитной проницаемостью, иногда немагнитные материалы с проницаемостью меньше 1. В электромагнитах реле — сердечники подковоообразной и цилиндрической формы из специальных сталей.

Для намотки дросселей и трансформаторов используют замкнутые сердечники — магнитопроводы Ш — образной и тороидальной формы. Материалом на частотах до 1000 гц служит специальная сталь, выше 1000 гц — различные ферросплавы. Магнитопроводы набираются из отдельных пластин, покрытых лаком.

Принцип работы идеального дросселя

Дроссель, как и любой другой элемент электрической цепи, содержит ряд параметров, которые определяются его физическими и конструктивными характеристиками. В зависимости от назначения дросселя одни его характеристики стараются улучшить, а значение других уменьшить. Но, несмотря на характер работы дросселя, его основным параметром является индуктивность, поэтому рассмотрим дроссель, содержащий только один параметр – индуктивность, такой дроссель называется идеальным и он характеризуется следующими допущениями:

— обмотка дросселя не имеет активного сопротивления;

— отсутствует межвитковая ёмкость проводников дросселя;

— магнитное поле в сердечнике однородно, то есть значение индукции и напряженности в различных его точках имеет одинаковое значение.

С учётом таких допущений, представим сердечник, на который намотана катушка.

Подадим на катушку переменное напряжение U, в результате по катушке потечёт переменный ток I, создающий в сердечнике переменный магнитный поток Φ. Тогда в соответствии с законом самоиндукции в витках обмотки возникнет ЭДС самоиндукции Е. Так как у нас отсутствует активное сопротивление обмотки идеального дросселя, то ЭДС самоиндукции уравновесит напряжение, вызвавшее электрический ток

В тоже время индуктивность, как коэффициент самоиндукции можно определить по следующему выражению

где ω – количество витков катушки,

S – площадь поперечного сечения сердечника,

B – магнитная индукция,

I – величина электрического тока.

Тогда выражение для ЭДС самоиндукции будет иметь вид

Данное выражение показывает, что ЭДС самоиндукции зависит от конструкции и размеров дросселя, а также от скорости изменения магнитного поля (dB/dt).

Так как в идеальном дросселе отсутствуют активные нагрузки, а только индуктивная составляющая, то активная мощность будет равняться нулю. В индуктивном элементе расходуется только реактивная мощность на создание магнитного поля.

Свойства, назначение и функции

Теперь разберём, что такое дроссель с точки зрения электрики. Если говорить коротко — это элемент, который сглаживает ток в цепи, что отлично видно на графике. Если подать на него переменный ток, увидим, что напряжение на катушке возрастает постепенно, с некоторой задержкой. После того, как напряжение убрали, в цепи еще какое-то время протекает ток. Это происходит так как поле катушки продолжает «толкать» электроны благодаря запасённой энергии. То есть, на дросселе ток не может появляться и исчезать мгновенно.

Ток на дросселе возрастает плавно и так же плавно снижается. Глядя на эти графики становится понятно, что дроссель —  это элемент, сглаживающий ток

Это свойство и используют, когда надо ограничить ток, но есть ограничения по нагреву (желательно его избежать). То есть дроссель используют как индуктивное сопротивление, задерживающее или сглаживающее скачки тока. Как и резистор, катушка индуктивности имеет определённое сопротивление, что вызывает падение напряжение и ограничивает ток. Вот только греется намного меньше. Потому его часто используют как индуктивную нагрузку.

У дросселя есть два свойства, которые тоже используют в схемах.

  • так как это подвид катушки индуктивности, то он может запасать заряд;
  • отсекает ток определённой частоты (задерживаемая частота зависит от параметров катушки).

В некоторых устройствах (в люминесцентных лампах) дроссель ставят именно для накопления заряда. Во всякого рода фильтрах его используют для подавления нежелательных частот.

Определение

Делителем напряжения называется прибор или устройство, которое понижает уровень выходного напряжения относительно входного, пропорционально коэффициенту передачи (он будет всегда ниже нуля). Такое название он получил, потому что представляет собой два и более последовательно соединенных участка цепи.

Они бывают линейными и нелинейными. При этом первые представляют собой активное или реактивное сопротивление, в которых коэффициент передачи определяется соотношением из закона Ома. К ярко выраженным нелинейным делителям относят параметрические стабилизаторы напряжения. Давайте разберемся как устроен это прибор и зачем он нужен.

Электрический дроссель: принцип действия, назначение, применение

Дроссель (в переводе с немецкого – «сокращать») – это одна из разновидностей катушек индуктивности. Главное предназначение этого элемента электрической схемы – «задерживать» (снижать на определенный период времени) влияние токов определенного диапазона частот. При этом резко изменить силу тока в катушке практически нереально – здесь вступает в силу закон самоиндукции, благодаря которому на выходе формируется дополнительное напряжение.

Дроссель необходим в электрической цепи в том случае, когда необходимо подавить переменную составляющую тока (например, помехи), существенно снизить пульсации в сети, а также ограничить или разделить в соответствии с поставленной задачей различные частотные сигналы (изоляция или развязка).

В электро – и радиотехнике применяется переменный ток в диапазоне от единиц до сотен миллиардов Гц. (1 герц – это одно колебание в секунду).

Условно такие широкие границы подразделяются на несколько участков:

  1. низкие ( звуковые) частоты (20 Гц – 20 кГц);
  2. ультразвуковые частоты (20 – 100 кГц);
  3. высокие и сверхвысокие частоты (от 100 кГц и выше).

Конструктивно низкочастотный дроссель очень напоминает обычный электрический трансформатор, только всего с одной обмоткой.

Последняя представляет собой витки изолированного провода, навитого на стальной сердечник, набранный из изолированных пластин (чтобы избежать возникновение токов Фуко), и обладает большой индуктивностью. Такая катушка характеризуется сильным противодействием любым изменениям тока в цепи: поддерживает его при убывании, и сдерживает при резком нарастании.

Также дроссели широко используются и при реализации различных высокочастотных электрических схем. В данном случае их исполнение может быть одно – или многослойным, при этом часто сердечники (как стальные, так и ферромагнитные) не используются. Иногда в качестве основы для навивки применяют обычные резисторы или пластмассовые каркасы. В диапазоне длинных и средних волн для обеспечения заданных параметров используется также специальная секционная намотка провода.

Главная техническая характеристика дросселя – индуктивность, которая измеряется в генри (Гн), сопротивление постоянному току, допустимое изменение напряжения, номинальный ток подмагничивания, а также добротность.

Последний показатель широко используется при расчетах колебательных контуров.

Применение магнитных сердечников позволяет существенно уменьшить габариты дросселей при тех же заявленных параметрах индуктивности. На высоких частотах используются ферритовые и магнитодиэлектрические составы, позволяющие, благодаря небольшой собственной емкости, использовать их в широком диапазоне.

По своему назначению такой вид катушек индуктивности можно подразделить на следующие виды:

  • переменного тока. Используются для токоограничения в сети; например, во время пуска электродвигателя или импульсных ИВЭП.
  • насыщения. Главное область применения – стабилизаторы напряжения.
  • сглаживающие. Предназначены для ослабления пульсаций уже выпрямленного тока.
  • магнитные усилители (МУ). Представляют собой катушки индуктивности, сердечник которой подмагничивается за счет постоянного тока. Меняя параметры последнего, можно изменять индуктивное сопротивление.

Существуют также трехфазные дроссели для использования в соответствующих цепях.

Сегодня разнообразные типы дросселей нашли широкое применение для решения разнообразных инженерных задач.

Интересное видео об электрических дросселях смотрите ниже:

Устройство прибора

Выполняется этот элемент из проволочного вида проводника, наматываемого в виде спирали. Этот проводник может быть как многожильным, так и одножильным. Проволока может наматываться на диэлектрический каркас или использоваться без него. Если применяется основание, то оно может быть выполнено круглым, прямоугольным или квадратным сечением. Физически же дроссель состоит из одного или множества витков проводника.

При изготовлении дросселя используются следующие разновидности намотки:

  • прогрессивная — шаг витков плавно изменяется по всей длине конструкции;
  • универсальная — расстояние между витками одинаковое.

Первый тип используется при создании изделий, предназначенных для работы на высоких частотах, при этом уменьшается значение паразитной ёмкости. Такая намотка может быть однослойной или многослойной, причем даже разного диаметра. В качестве материала для изготовления проводника используется медь.

Увеличение индуктивности достигается путём добавления ферромагнитного сердечника. В зависимости от назначения устройства используют разные его виды, например, для подавления высокочастотных помех — феррит, флюкстрол или карбонил, для фильтрации звуковой частоты — пермаллой. В то же время для дросселя, работающего со сверхвысокими частотами, применяют латунь. Магнитопровод рассчитывается так, чтобы избежать режима насыщения (падения индуктивного сопротивления).

Чтобы избежать насыщения в дросселях, магнитопровод изготавливается с зазором. При изготовлении дросселя стараются обеспечить:

  • необходимую индуктивность;
  • величину магнитной индукции, исключающую насыщение;
  • способность выдерживать необходимый ток.

Для этого обычно сначала рассчитывается зазор и число витков исходя из силы тока и индуктивности, а после определяется максимально возможный диаметр проволоки. В цифровых малогабаритных устройствах дроссель изготавливается в плоском виде. Достигается это путём печатания проводниковой дорожки в виде круговой или зигзагообразной линии.

Ссылка на основную публикацию